
Proceedings of the 8th Debian Conference

DebConf8 Proceedings Team

August 10th-16th, 2008

Preface

These proceedings contain a record of the technical and social events held
during 2008 Debian Developers Meeting, DebConf 8, at Mar del Plata (Ar-
gentina), an open event aimed to improve communication between everyone
involved in Debian development.

This document has been arranged by the DebConf8 Proceedings Team, on
behalf of the DebConf8 Organization Team. The authorship, copyright and
licensing information of each article is specified in the proper chapter.

In addition to a full schedule of technical, social and policy talks, DebConf pro-
vides an opportunity for developers, contributors and other interested people
to meet in person and work together more closely. It has taken place annually
since 2000 in locations as varied as Canada, Finland and Mexico. Debian Con-
ferences have featured speakers from around the world. They have also been
extremely beneficial for developing key Debian software components, includ-
ing the new Debian Installer, and for improving Debian’s internationalization.

More information about DebConf8 and the Debian Developers Meeting can
be found on the DebConf website at http://www.debconf.org/.

http://www.debconf.org/

Contents

Preface . ii

Contents i

1 Knowledge, Power and free Beer 2
1.1 Free Beer . 2
1.2 Knowledge . 7
1.3 Power . 11

2 Solving Package Dependencies 18
2.1 Introduction . 19
2.2 The Past: EDOS . 20
2.3 Present and Future: Mancoosi 33

3 Best practises in team package maintenance 44
3.1 Introduction . 44
3.2 Questions . 45

4 Custom Debian Distributions 48
4.1 Symbiosis between experts and developers 49
4.2 Attracting people by providing interesting technical base 50
4.3 CDD is more than packaging specific software 51
4.4 Techniques . 52

5 The Debian Videoteam — Behind the Scenes 54
5.1 Introduction . 54
5.2 What the software does . 55
5.3 Live demo . 55

6 DebConf9 Caceres 58
6.1 Introduction . 58
6.2 Information Society Project in Extremadura 59
6.3 gnuLinEx . 60
6.4 Network in Extremadura . 62
6.5 Why Cáceres? . 63

i

7 Abstracts 66
7.1 Debian Webservices Development 66
7.2 dak discussion / hacking session 66
7.3 Emdebian update . 66
7.4 Virtualisation in Debian . 67
7.5 Debian on the Neo1973/Freerunner 67
7.6 Debian Edu 100% in main . 67
7.7 SPI BOF . 67
7.8 Managing 666 packages, or how to tame the beast 67
7.9 dh make webapp: yeah right! 68
7.10 Locating bugs to kill with SOAP 68
7.11 Ruby packaging in Debian . 68
7.12 Organizing better in-person meetings 68
7.13 Debian Derivers Roundtable . 69
7.14 Debian and LiMux . 69
7.15 Debian-Science . 69
7.16 Synfig - Animation in the free world 69
7.17 Packaging with version control systems 70
7.18 Debian and Ubuntu . 70
7.19 Herding Wild Cats . 70
7.20 LaTeX Beamer Debian Theme BOF 70
7.21 Quality Assurance in lenny+1 70
7.22 Healthy CDDs . 71
7.23 Debian-Med BOF . 71
7.24 Method diffusion in large volunteer projects 71
7.25 Best practises in team-maintaining packages 71
7.26 netconf . 72
7.27 Bringing closer Debian and Rails 72
7.28 Internationalization in Debian 72
7.29 Redesigning DEHS (a.k.a. changing the watch files atmosphere) 73
7.30 Debian-HPC: making Debian ”the” distro for clusters and su-

percomputers . 73
7.31 Bits from NMs and users . 73
7.32 Multi winner voting in Debian 73
7.33 Debian technical policy update 73
7.34 Debian Wiki . 74
7.35 Debian: casos de éxito en implementaciones empresariales . . . 74
7.36 Internacionalización en Debian 74
7.37 Proyecto gnuLinEx . 75
7.38 ¿Qué es el Software Libre? . 75
7.39 Hosting Caseros . 75

ii

Chapter 1

Knowledge, Power and free
Beer

Andreas Tille

Abstract

Sometimes the meaning of free remains vague and unclear for out-
siders. There seem to be different prices for something that is free which
is confusing. The talk tries to find an answer to the question: What the
hell will I get if I buy a box labelled “Debian GNU/Linux”?

1.1 Free Beer

1.1.1 Hard and soft Ware

Hard Ware

In the field of informatics we differentiate between hardware and software.
What does these terms mean?

First lets think about the term ware in general. A key feature of a ware
- which is something which is selled by a vendor - is its weight. Very often
the price of the ware is proportional to this weight. Both parties - vendor and
vendee are able to do certain things like biting on the thing or throbbing at
it or whatever.

All these methods might be useful to check the quality and thus the value
of the ware to buy - or just for fun. In any case the buyer is able to check
whether the ware fits his expectations before handing out the money while
the seller is able to prove that the features of the thing justifies the price.

The term computer hardware perfectly fits this features. It comprises all
of the physical parts of a computer, as distinguished from the software that
provides instructions for the hardware to accomplish tasks.

2

Once the vendee has bought the ware he deserves certain rights on it. He
is now the owner of this ware (provided he has paid the full price he and the
vendor agreed to). The person who owns something has the pristine right
to alter, change or disassemble the thing. If the ware shows some hidden
problems, has some faults or gets broken in a certain time the vendor has to
guarantee for the promised features. Finally the owner has the right to sale
again the ware that was bought some time before.

As a rule duplication of a ware is not worth the effort because the profes-
sional manufacturer mostly can do it much cheaper.

Soft Ware

The features of software are quite different. In fact the question comes up
whether it really deserves the term “ware”. The main feature of weight is
missing completely because defining a weight for software makes absolutely
no sense. Moreover the person who is about to buy a certain software is
barely able to check it completely as it is possible with any ware. Even if
there are some vending models to use a software for a limited time before
buying it. But these days software is this complex that the verification and
comparison of competing products is sheer impossible (compared to find out
which salesman trades fresh fruits at the market place).

But even if the buyer payed the price for the software the relation to the
thing which was payed is quite different than for a piece of hardware which
was discussed above. This becomes clear when somebody would take the time
to read the strange text which is always displayed of the installation routine
of proprietary software. There must be a reason why this hard to understand
text which sounds very juridical is bothering the user who wants just to install
a piece of software on the computer. But most users have learned that it works
perfectly to just press the ‘‘Next’’-button while ignoring the text.

This behaviour prevents users from recognising that they do not really
own what they payed money for, they just got a license to use it, sometimes
applying some additional restrictions like that the software can only be used
on this specific computer and will only work if you send in some data of your
computer to get a license key. In case of a piece of hardware – say a chair –
this would mean you pay for the chair but you are only allowed to use it in a
certain room next to a specific table and only at the gable end; for the other
side a different chair with a license to use at this place is needed.

Moreover the license of proprietary software does not allow to change any-
thing. Sticking to the chair-example, this would mean the user is not allowed
to paint it with a different colour. Last but not least selling the software is
often not allowed. The reason is obvious: The user just does not own the
software - the money the user spend on it was for a license to use but not to
sell.

Besides this completely different relation between the owner of a piece of

3

hardware and the license owner of some software there is a further difference:
In principle it would not be hard to duplicate software. That’s why this is not
only strictly forbidden but also prevented by technical means.

Fresh fish

Around 50 BC at the market place of a small village in northwest Armorica
the fishmonger Unhygienix is infamous for his rotting products. This often
causes trouble with Fulliautomatix and other inhabitants of the village. This
means selling bad smelling fish at the market place is nearly impossible. Each
customer would immediately notice that it is to old.

But what about software?
The customer has no sign about how old the code of proprietary software

might be. It has no odour or other signs of age which are easily to recognise.
Moreover software usually consist of several parts which are developed at
different times. It frequently happens that the major parts are quite old and
only new features and user interface is really fresh.

But what is the problem here?
If somebody pays for a license a certain amount of money only a fraction

is payed for really new code. A larger part of the money is spend for code
which yet was paid in former versions. But former versions should not cost
money. Users just got the license to use this code for years. But what are the
stinky bits in the whole software bundle?

Lets recapitulate: Users are perfectly willing to pay for the work of the
programmers. It is a fair deal to pay for a service like software development.
But the deal is only fair in the case that the user is able to verify how much
time was spent to produce this piece of software which was not payed before.

1.1.2 Patent recipes

The progress

The progress bar is something which keeps impatient users happy. It is the
way of programs to inform users that some business is going on and give hints
how long this business will last. It is no rocket science. If you see a 100 m
sprint you can clearly see start and goal and the runners move like a progress
bar from the beginning to the end. So a progress bar can also be viewed as
a analogue to real live procedures which are just visualised at the computer
monitor. It is hard to tell what the technical invention in the progress bar
might be so it hardly can be patented.

But there is Patent No. EP0394160; Applicant(s): IBM (US) which
exactly describes the progress bar.

The next example for a so called “technical invention” might be another
illustration of the issue: It seems reasonable to store different versions of a
document in that way that you include the date in the filename. Provided that

4

this date-tagged file archive is stored on a network drive which might be ac-
cessible to colleagues than this “technique” infringes Patent No. DE10108564
which is just valid in Europe.

So what is the issue in declaring common sense as technical invention?
Big software companies acquire a large portfolio of patents - reasonable

but mostly such strange things as mentioned above. In case they want to use
a technique which is patented by another big company the deal is as follows:
Allow me to use your technique and I allow you to use my technique for free.
So a large amount of patents is kind of an insurance not to become sued
by a competitor. This sounds very reasonable from the point of big software
companies and is the driving force behind them to register as many as possible
patents.

But what about smaller software companies that do not have this kind
of insurance. Or even worse what happens to the Free Software programmer
who has not even the slightest idea that his idea he had from common sense
is patented by someone else?

EU: Council versus Parliament

This talk is about Free Software. It is not about politics. But unfortunately
the topic of software patents in Europe is a very political topic. Unfortunately
not many people do care about this. So it remains mostly not regarded if rep-
resentatives of national parliaments vote for different things than the national
parliament has instructed them to vote in the Council of Europe. Less peo-
ple notice if the rules of democracy are broken for the sake of big software
companies. But this would be material for one or two separate talks.

So here is some homework for the interested reader. Just ask your favourite
search engine for the following questions:

1. What is the difference between the Council and the Parliament of Eu-
rope?

2. Which panel brought up the issue of software patents and what is the
suspicion who is behind this issue?

3. What do we owe the representatives from Poland in the Council of Eu-
rope?

4. If you are not from Poland what role played the representatives from
your own country in the Council?

5. Which panel has the chance to stop the efforts in the wrong direction.

If you are able to answer all these questions you can go straight to your
representative which you voted for the European Parliament and ask him to
vote against software patents.

5

1.1.3 Free of charge

Soft ware is not for sale

In the beginning it was stated that software can hardly be regarded as a ware.
This has the consequence that it is hard to sell it for a fair price. There are
many people who get this idea but came to different conclusions. Common to
these conclusion is the fact that they give away their software at no cost. But
what are the differences.

Download here The user can download the ready to run executable. For
most users this is fine. They want a program which just does a certain
job and do not want to pay money. This is kind of “free beer” - software.
You go to the restaurant to get drunk without spending money - free
beer works perfectly for this purpose.

But is this really freedom? Does this program do what the user expects
it to do? Isn’t it just a Trojan horse which spies out user data? Can the
user be really sure that it is not harmful?

It just happened that people mixed something into the free beer . . .

Do not change The author of a piece of software allows the user to have a
look at the code. There might be several conditions under which the
user is allowed to look at the code but assume here that having a view
on the code and using the program is free of charge.

This at least might ensure the user that the code does not contain any
harmful bits which is not the case in the free beer flavour of free of charge
software.

Free Software Free Software is according to its definition not only free of
charge, it also allows to use the code in complete freedom which means
the user is allowed to change the code for his own purpose and can even
give away the changed version.

If there is such a lot of software free of charge the world must be a better
place. So a normal user might wonder: Where’s the catch?

The catch: Free 6= free of charge

The term “Free Software” does not say anything about the money a user
has to spend to solve a certain task with this very peace of software. The
crucial thing is just that the code of the software can be used without any
restrictions by anybody. The fact that the code can be used by anybody free
of charge does not implicitely mean that it is really useful to solve a certain
task immediately. Any piece of software needs adaptations, maintainance and
service. This does not come for free.

6

The free in “Free Software” is more in the sense as “free speech” instead
of free of charge. Free speech requires time to write out. It needs competence
about the topic and sometimes free speech requires courage. All these are
values which can not be countervailed with money – but they are certainly
worth anything. So there is either some cost of time for the user in person or
the user has to pay anybody to do the job.

The exact definition of Free Software is given in the Debian Free Software
Guidelines.

1.2 Knowledge

1.2.1 Alternatives

WikiPedia

If there is anything in the world which is easily comparable to the fascination
of Free Software by sharing many ideas in common than it is free knowledge.
The goal to collect the whole knowledge of mankind for the whole mankind
for free is the goal of WikiPedia for short.

If you are an expert in any field or think you know something special
just test the quality of this community effort driven encyclopedia: Go to
wikipedia.org and look up this special field. There are two basic options:

1. The contents is well written and is right according to your knowledge.
Just be happy that you found a new information source and continue
checking the contents of other fields if they represent your own knowl-
edge.

2. The contents is not well written, is not precise or even completely wrong
- you just are not happy with the contents. There might be people who
just surf away and use other sources of information while ignoring this
WikiPedia rubbish.

But once you proceeded through this paper up to this point you hope-
fully behave differently. You learned something. You just recognised
the fact that nothing comes for free. Take a little bit of your spare time
and bring your knowledge in precise and well formed sentences and just
make WikiPedia better. Your fellow WikiPedia writers will be happy
about this and other readers will be even more happy from now on once
they stumble over the page which was not satisfying before your editing.

WikiPedia is taken honestly

Figure 1.1 shows a quite interesting spam mail. Well, not the contents itself
is interesting, but the fact that spammers do refer WikiPedia to “prove” that

7

http://www.debian.org/social_contract
http://www.debian.org/social_contract
http://wikipedia.org
http://wikipedia.org

'

&

$

%

Subject: Wikipedia knows the shit
Date: Sun, 27 Mar 2005 16:18:36 -0200
From: Christian
<VPYLGHQ@interacti.net>
To: aids-std@rki.de

Newest penis enlargement system:
- Increases the penis length and girth
- Medically Proven (source: wikipedia)
- No Surgery
- Permanent Results
- Proven Traction Method
- 100% Satisfaction Guaranteed

Find more info here: ...

Figure 1.1: Spam mail referring WikiPedia

their rubbish is worth anything. This is kind of: If your enemy takes you
honest you must be somebody.

On the other hand it reveals the most common biased opinion about
WikiPedia: If anybody can write and change articles how can be assured that
nobody writes something which is wrong on purpose. (This effect is called
“vandalism” in the WikiPedia slang.) The answer is: Many people are watch-
ing.

There is a log of every single change of each single page. Reverting some
change is done quite quickly and thus the effort of vandalism is high compared
to the effort which would be needed to keep WikiPedia clean.

Assume the dirty spammer which sended the spam mail which is displayed
in figure 1.1 had edited WikiPedia first before sending out the strange mail.
Even if this person would have done this – it is not in WikiPedia any more.
This is one example that the auditing process of the WikiPedia activists is
working effectively and even if there is vandalism it does not seem to have a
major influenze on the whole collection of free knowledge.

Last but not least there is some solution for the boring spam problem: In
figure 1.2 the output of this spam filter showes that it catched the beast – a
nice example for a useful peace of Free Software.

8

#

"

!

SpamAssassin: 17.1 points, 5.0 required
pts rule name description
0.1 SATIS GUAR BODY: Mail guarantees satisfaction
17 BAYES 99 BODY: Bayesian spam probability is 99 to 100%

Figure 1.2: SpamAssassin handled spam mail

1.2.2 Free Software in general

As You Like it

What is the basic need of users of any piece of software? What do users really
want to solve a certain problem?

A steady and continuous functionality over long period is the main de-
mand of software users. The program has to be safe against failures to not
interrupt the work. It has to have a certain set of functions which are neces-
sary to solve a certain task and it has to provide this functionality for a long
period in which the task in question has to be solved. Any upgrades of the
software do require new learning which just takes time which is cut of from
the time span which is reserved for the main task of the user. It is a common
missconception that users always want the latest and greatest version of any
software project. A further missconception is to overload programs with more
and more functions: The more functions a program has the harder ist will be
for the user to recognise which functions are really helpful to solve the task in
question.

If these requirements are fullfilled the user does not really matter about the
concrete program which is finally choosen to solve a certain task. A user simply
wants to solve a task and does not want to bother about the philosophy of the
tool that is used for it. Just ask your local carpenter whether he cares about
the wood which was used to make a handle for the sledge he is using. Most
carpenters will not care whether this piece of wood comes from a forest which
should be saved or from anywhere else. So users just want a functionality.

In the case of software functionality is not just the program. It is more than
that: it is the program and the service which is provided for it. Users have to
decide how much money they want to spend for the given task - usually there
is some budget for any task. So if there is a given budget and the program
itself comes for free there is more money left for the service. Usually service
is quite expensive these days so it makes sense to spend more on this side of
the calcualtion.

So far to the advantages from the users point of view. But what about
the producer of a piece of software? What would a software company loose
if they would release their code which proprietary software companies keep

9

as a secret. There are several reasons which speak for releasing the code as
Free Software. It is just the problem that everybody thinks it is impossible
because selling proprietary binary code is kind of normal these days. But it
is really the most effective form to to make money in software business?

At first there are software companies which make all their money based
on Free Software like Red Hat. At second there are companies that see their
future in releasing at least parts of their code as Free Software. Well known
examples are Novellor even IBM. The rationale behind this is quite simple:
The proprietary software market is currently characterised by a hard compe-
tition. If a company recognises that it is impossible to beat the competitor it
tries to drift to a new field. In several cases this leaded to a release of code
as Free Software (Mozilla, OpenOffice, Interbase, MaxDB, E-Directory, . . .)
and providing service for this software (see above for the relation between
functionality service and program code).

As a matter of fact providing services for Free Software is simply cheaper
than if the code is not available. It is quite common that there are always some
users of a certain piece of software that are keen on trying to solve a problem
they have themselves. In case they have understand who Free Software works
– sharing ideas, work together, join forces – they provide solutions or fix bugs
in the software for free. They just have learned that if they provide their work
to the authors the next version will contain their code and will make their
own work easier because the program has an enhanced functionality. And
this is the real clue: The authors of a piece of Free Software get freelancer
for no extra cost. The driving force behind these freelancers who volunteer
to provide enhancements is that they need a certain functionality to solve a
task. They want to spend this time only once and thus they submit their
work to the authors. If the authors are part of a company which provide
services for this software in this way they got some freelancers at no cost.
Compared to external freelancers for proprietary code which requires hiring
educated programmers for a lot of money, signing discretion contracts while
being unsure whether they do the same for a competitor etc. the Free Software
approach has an extraordinary financial advantage for the authors of the code.

The crux hereby is that you need a wide user base because only a small
amount of users will really provide reasonable input. On the one hand this
is the case just because in most cases users will not be gifted programmers
on the other hand users might simply have not understand the principle of
Free Software. They regard software as a ready product which just has to be
accepted with all flaws it might have and with all problems it might cause
when trying to do the tasks a user want to do. To solve the latter problem
texts like this one are written.

A wide user base to attract gifted programmers is normally no problem
in case of pieces general software which is needed by every user. So finding
programmers for an operating system kernel (like Linux), a web browser (like
Mozilla), an office suite (like OpenOffice) etc. works perfectly. The problem

10

http://www.redhat.com
http://www.novell.com
http://www.ibm.com

changes in case of specialised software which is naturally used by only specific
user like people working in certain professions.

Get the facts

When the main global player in software business recognised that there is
something else which is penetrating the software market. After a certain time
they started a campaign title: “Get the facts”. They paid for doing studies
which should prove that proprietary software is better than Free Software.
No matter what the result of these studies might have been it shows one
important thing: They would not pay for studies against somebody who is
not taken honest.

BTW, it turned out that a certain amount of the facts was quite question-
able. . .

1.3 Power

1.3.1 Distribution

Linux from scratch

The usual way a user obtains a software bundle is when buying a piece of hard-
ware. This makes perfectly sense because computer hardware is completely
useless without software. Usually a computer comes with a proprietary oper-
ating system and some additional proprietary programs to solve simple office
tasks.

Assumed a user have heard about the existence of Free Software and de-
cided to try it on the new computer. The reasons might vary from the intent
to save money (and buying a computer without any software) to just being not
happy with the software which would usually come bundled with a computer.

The first thing which is needed is a Kernel of an operating system. There
are more than one option but Linux is the most popular choice. In principle
the way to obtain a piece of Free Software is to go to the web page where the
source is provided, find a compiler which is able to compile this source and
install the program that was builded on the machine. It will take a certain
amount of time to install the Linux Kernel and some basic tools which make
the “GNU/Linux” operating system. This is described in the Linux from
scratch project.

The modular nature of Free Software implicitly means that at this point
the user does not have a shiny colourful desktop but just a command line
interface. The next step would be to get the source and compile the X Window
System which is not really a simple task for a beginner. If our user managed
the work up to this point he reaches a crossroad: The religion of the desktop
environment. The main roads are marked with the signposts “Gnome” and
“KDE” but these are not the only ones. The user fails to find a reasonable

11

http://www.linuxfromscratch.org/lfs/
http://www.linuxfromscratch.org/lfs/

decision and flips a coin which road to follow. From this point on the screen
of the computer looks nice – but there is no program which enables the user
to do productive work.

Our brave user now has heard about two shiny new projects: Firefox
and Thunderbird. He finally manages to get these programs installed on the
computer and can do the first tasks: Browsing the web and managing e-mails.
Even if this owner of the new computer started very optimistic with the intent
to install Free Software recognises that it was quite a large amount of work to
reach this step.

Once it comes to more complex user applications like a comfortable office
suite like Openoffice.org, a professional type setting system like LATEX or a
feature rich image manipulating program like Gimp the user is really tired.

If it finally comes to some server software like a web server and a database
server the owner of the computer is completely tired. So many decisions to
choose from, so many web sites to go - what is the sense to spend so much
time?

Distributions on the market

The answer is: Nobody really wants to spend so much time just to exercise the
possibility of Free Software: Do it yourself from the source to the installation
for every single piece of software. It is not only time consuming it is even error
prone to build a complete system. It just should be done by experts.

A complete system containing all the bits of Free Software mentioned
above and much more is called distribution. It is builded by experts that
know the code, use sophisticated tools to build the software and prepare it
to be installed quickly onto users machine. This preparation is done in so
called packages that contain compiled code of the Free Software projects and
some preconfiguration to work together with other components of the whole
system. Building a distribution from Free Software is kind of a service. Users
may decide whether they want to spend days for doing it all on their own or
just pay a certain amount of money to buy a distribution. Most users decide
it is worth spending some money for a distribution.

But this uncovers some misunderstanding in the relation of Free Software
and money: While (at least most) bits of the distribution are free of charge
the whole thing costs a certain amount of money. This is one flavour of the “a
thing is more than the sum of its parts” principle. The price which is payed is
for the service inside and users pay what they regard worth the money. They
just have to sum up the amount of money they could gain with productive
work in the same time when doing all things on their own. As a side note it
should be mentioned that there are also distributions available for no charge
but this is explained in detail below.

It has made clear now why users go to a software store and buy a distri-
bution of Free Software. They buy a certain box which has printed in bold

12

letters: “XYZ Linux version A.B” where XYZ stands for the company that
compiled the distribution and A.B for the version number the distributor has
chosen to mark this release state of the whole bundle of software. New users
tend to ignore the fact that this is by no means the version number of Linux
which is just the kernel of the operating system and currently has a version
number below 3. So if somebody is telling you that he is using “Linux ver-
sion 8.x or 9.z” he has apparently a misconception about what Linux is and
what he really bought in the software store. To express this more clearly Free
Software enthusiasts speak from “GNU/Linux” because the complete system
is more than just the Linux kernel but the many other Free Software tools
around which finally make an operating system.

But once we come to colourful boxes with bold letters on it we are back
to the commercial world of market place with pressure of competition and
gaining market share. It is a known fact that selling GNU/Linux distribution
is a normal business where all the rules apply that are valid for vendors of
proprietary software. If a distribution company is not able to make profit it
will not be able to survive. The good news is that there is a certain number
of companies that survive perfectly since several years. Why is this good
news? It just proves that it is perfectly doable to run a business on top of
Free Software - which is free of charge in its pieces.

But how to compete with other distributors that are just compiling the
same basic set of Free Software applications. There are several distinctions
between distributors. One is the local aspect. So if a user from Northern
America speaks about his new Linux 5 (see above) he is talking about his
copy of RedHat Linux while a user in Germany has not really a more recent
version of the Linux Kernel if he is talking about his new Linux 10 because
he is referring to his copy of SuSE Linux which has just a different version
number scheme. People in France prefer Mandrake Linux and Turbo Linux is
the main player in Asia – except for China where RedFlag Linux seems to be
used mostly.

To make the jungle of distributions even more impenetrably there are dis-
tributions that target more to the general desktop user with the latest office
applications and providing interfaces to proprietary applications which nor-
mally run on other operating systems using emulators (like Wine or DosEmu).
Users are free to pick the distribution that fits their needs best. They have a
real choice which they do not really have in the case of proprietary systems
because there is basically one for a given hardware platform.

Users have a chance to identify themselves with their distribution of choice
and who ever have heard over a flaming discussion between users of different
distributions knows what competition means.

13

The missing link

As it was explained in section 1.2.2 Free Software works most effective if
there is a wide user base. That’s why also distributors decide to include
these Free Software projects that are potentially used by many users. From a
distributors point of view this makes perfectly sense because serving a mass
market implies the distribution will be bought potentially by a high number
of people which keeps the business running. It would be wasteful for the
distributor to employ specialists for preparing specialised software of certain
fields to sparse specialists the work to find out which software fits their needs
and how to install this software.

For a moment this sounds fair enough to build a solid base of often needed
applications and leave the remaining things for those people who really need
it. But the problem is that because applications of special fields do not have a
wide user base and thus did not developed so far that failure prove installation
methods and easy updating mechanisms are well developed which enable peo-
ple who are no computer experts to easily proceed with the task to install this
software on their computer. The problem becomes worse if the applications
require a complex database or web server setup.

One solution would be that small service providing companies take over
this job. It is quite common that the authors of a certain piece of specialised
Free Software provide their code for free and sell the service of installation,
adaptation, documentation and maintenance.

The other solution is that a group of experts builds a complete distribution
by just moving the Free Software development principle to distribution level.
In fact this is done and it got the name Debian.

1.3.2 Debian - a distribution builded by a community

Maintainers are experts

In contrast to the GNU/Linux distributions mentioned above Debian is not
a company but an organisation. The goal of this organisation is not to sell
the distribution. Debian sells nothing. It just produces a free distribution.
The people behind Debian who are united in this organisation have just a
common goal: To build the best operating system they can afford. While this
goal sounds simple the motivation for doing this seems to be missing. While
commercial distributors try to earn money Debian people seem to work just
for fun.

Well, sometimes it is real fun but there are stronger reasons for the Debian
people to work on their common goal: They just get what they need for their
own work. They know that they can trust their system and users appreciate
their work. The best appreciation users could express is by just providing
informations about problems they see, suggesting solutions for these problems
or even sending in code which just has to be applied to make Debian better.

14

But how does this particularly work? The developers of Debian are volun-
teers who have a special interest in at least one special piece of Free Software.
A developer becomes a so called maintainer of a package by just doing the
usual work all distributors are doing: Obtain the source of the software from
the download area of the software, compile the software and build packages
which are easy to install. This is so far no difference to other distributors
(note: the packaging format might be different but this is really a technical
matter). The difference here is that this maintainer becomes on the one hand
the first user of this package – so he is interested personally – and he is the first
person to ask if users would run into trouble with this package. It becomes
clear that the maintainer is kind of the missing link between the authors of a
Free Software project and the final user.

The maintainer is probably one of the most qualified person for this spe-
cial application inside Debian - and the users know his name. For complex
applications usually there is even a group of maintainers who care for larger
projects. But each of them knows about the problems that the application
might cause in the installation process and tries to solve these with inside
scripts and configuration files that reduce the work for the final user to a
minimum.

Special applications

But what about the special applications issue which was not solved by com-
mercial distributors who are only able to provide a quite general system? This
problem is solved inside Debian because also Debian maintainers work in spe-
cial fields and need special applications. So if a maintainer works in the field
of medicine he will care for the medical applications he needs. Teachers can
become Debian maintainers and will probably care for applications that can
be used in their schools for education etc. In Debian this principle is called
“DoOcracy” = the doer decides.

So it turned out that Debian became the largest collection of ready to run
Free Software in the internet, containing not only general applications but
also programs which only specialists need. They are provided in a way that
users can easily install them on their computer. Users of special applications
will not be troubled with extra efforts like compiling the source themselves
and follow a complicated install procedure.

Lost in the jungle of applications

The largest collection of ready to run Free Software – this sounds great for
marketing experts and makes a quite good statistics. But what would this
mean for the unexperienced user who just started using Debian and finished
the first steps of the Debian installer? Should this poor user start reading the

15

descriptions of 18,000 packages where at best 50% can be understand by a
newcomer?

If this would really be the case the applications that are really interesting
for the user would be hidden perfectly and it would be nearly the same as if
they would be not packaged at all. But there is a light at the horizon.

Custom Debian Distributions

Custom Debian Distributions are completely integrated into Debian. It is
a technique which enables a Debian user to focus on these parts of Debian
which are really interesting to solve a special task. It is implemented in so
called “meta packages” which are simply spoken packages which can only be
installed if a set of other packages is installed at the same time. The packaging
mechanisms inside Debian care for everything if the user tries to install a meta
package.

So in case a user is a teacher and wants to install a computer lab with edu-
cational software for the students, focussing to the DebianEduCustom Debian
Distribution is the best idea. In this special case the situation has developed
that far that there is even a special CD to install Debian-Edu also called
SkoleLinux and the whole Debian system is not really needed, but in principle
everything which is on the SkoleLinux CD is included in Debian.

Another example is DebianMed. It was prepared for people working in the
field of health care. There are a lot of applications that are used for DNA or
protein sequences inside Debian. All of these will be installed when one single
package called med-bio is installed. The same procedure for medical imaging
applications: The installation of med-imaging causes the installation of all
packages that are relevant for users who have to deal with medical imaging
tasks.

This technique dispenses users that are working in special fields from the
task to do researches which applications do exist and which are relevant for
their own task. The packages will not only be installed at this computer but
they also get a menu entry which is made visible in a special user sub menu
for easy access to the programs in question.

Conclusion

In the first it was explained why Free Software exists and that “free” in this
sense does not really mean “free of charge” as free beer. In the second part
also free knowledge (WikiPedia) was explained and things people should know
when dealing with Free Software and their relation to proprietary software
were mentioned. Finally the third part explained which power is behind Free
Software if it is used sanely in a distribution which fits the needs of users.

16

http://wiki.debian.org/DebianEdu
http://wiki.debian.org/DebianMed

Chapter 2

Solving Package
Dependencies: From EDOS
to Mancoosi

Ralf Treinen and Stefano Zacchiroli
Laboratoire Preuves, Programmes et Systèmes
Université Paris Diderot, Paris, France
{treinen,zack}@{pps.jussieu.fr,debian.org}

Abstract

1 Mancoosi (Managing the Complexity of the Open Source Infras-
tructure) is an ongoing research project funded by the European Union
for addressing some of the challenges related to the “upgrade problem”
of interdependent software components of which Debian packages are
prototypical examples.

Mancoosi is the natural continuation of the EDOS project which has
already contributed tools for distribution-wide quality assurance in De-
bian and other GNU/Linux distributions. The consortium behind the
project consists of several European public and private research institu-
tions as well as some commercial GNU/Linux distributions from Europe
and South America. Debian is represented by a small group of Debian
Developers who are working in the ranks of the involved universities to
drive and integrate back achievements into Debian.

This paper presents relevant results from EDOS in dependency man-
agement and gives an overview of the Mancoosi project and its objectives,
with a particular focus on the prospective benefits for Debian.

1The research leading to these results has received funding from the European Commu-
nity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n◦214898.

18

2.1 Introduction

Building and maintaining a free software distribution is a challenging task. A
user expects to be able to install any selection of packages from the distribu-
tion on his machine, and that the installation goes smoothly and results in a
working system with the desired functionality. Any requirement, for instance
the need of installing certain auxiliary packages from the distribution, should
be detected by the tools coming with the distribution, and should be satisfied
automatically whatever packages the user wishes to install. Incompatibilities
in user wishes should be detected and reported back to the user with a sat-
isfying explanation. Software is expected to be readily available in its latest
version, of course well-tested without any bugs or any remaining incompati-
bilities with other software components. All this is expected to work smoothly
on a wide range of architectures and system configurations.

It is the task of a package maintainer to do her best to satisfy these ex-
pectations. Luckily, a maintainer has at her disposition a sophisticated in-
frastructure, a knowledge base of policies and best practices, and the support
of her fellow developers. On the other hand the maintainer is also faced with
upstream authors who usually have their own ideas about how their software
is supposed to be compiled, or how it should interact with the rest of the
system.

The EDOS research project (for Environment for the development and
Distribution of Open Source software) had the objective of coming to help
and to provide FOSS distributions with better tools to help them do their
job. The project was funded by the European Commission under the IST (In-
formation Society Technologies) activities of the 6th Framework Programme.
Besides several public research institutions from different European countries
and some small enterprises in the FOSS business there were two commer-
cial GNU/Linux distributions in the project: Mandriva from France who is
building one of the most popular RPM-based distributions, and Caixa Mágica
from Portugal who is well-known in Portuguese-speaking countries. This dis-
tribution is again RPM-based, and also upstream author of the apt RPM tool.
For the successor project Mancoosi (for Managing the Complexity of the Open
Source Infrastructure) Pixart from Argentina joined in with its Debian-based
distribution. EDOS started in October 2004 and ended in June 2007. Man-
coosi started in February 2008 for a duration of 3 years.

The EDOS project was relatively broad in scope and had workpackages
on the following subjects:

• formal management of software dependencies

• flexible testing framework

• peer-to-peer content dissemination system

• metrics and evaluation

19

We will in this paper let the last three of these workpackages aside since
the authors haven’t been involved in these, and present from EDOS only
the workpackage on dependency management. We decided to focus on the
problem of distribution coherence from the release manager’s point of view,
and therein on one basic question: Is it possible, for a given user selection
of packages, to install these when only the packages from this repository are
available? We were only taking into account package relationships that are
expressed by the metadata of packages (that is in Debian: the control file).
Relevant results and applications for Debian will be presented in Section 2.2.

The successor project Mancoosi again has several workpackages. The
stream on dependency management takes off where EDOS has ended and
tries to extend our previous results to build better tools for the system ad-
ministrator who wants to perform a system upgrade or package installation
on a real system. More about this will be discussed in Section 2.3.

EDOS has developed its own terminology which Mancoosi continues to
use:

Installer A tool to unpack and configure, upgrade, or remove a locally avail-
able package on a local system. In Debian: dpkg.

Meta-Installer A tool to resolve (higher level) user requests of installing,
upgrading, or removing packages on a system. This tool will have to
access possibly remote packages repositories, and construct a sequence
of commands for an installer. In Debian: apt-get, aptitude, dselect.

Metadata of a package is the data that can be statically (that is, without
performing an actual installation) extracted from a package. In case of
Debian this is the contents of a packages control file, which flows into
APT package lists (Packages and Sources).

2.2 The Past: EDOS

2.2.1 Formalization of Inter-Package Relations

One of the first objectives of the EDOS project was to establish a simple
mathematical model of a (GNU/Linux) distribution. We decided to restrict
ourselves in the context of EDOS to relations between packages as they are
seen by a meta-installer. Though the model is general enough to describe
the essential features of common packaging systems (in particular Debian and
RPM) we will focus in the following on the modeling of the package relations
as found in Debian.

The Debian policy lists different possible relations between binary pack-
ages: Depends, Recommends, Suggests, Pre-Depends, Enhances, and Con-
flicts. The Replaces relation concerns only the installer (not the meta-installer),
and the same seems to be true for the Breaks relation (which wasn’t included

20

Package:& a & Package:& a
Version:& 1 & Version:& 1
Depends:& b, c|d($>$=2) & Depends:& b(=2)|b(=3),
&&&c(=3)|d(=2)|d(=3)

Package:& b & Package:& b
Version:& 2 & Version:& 2

Package:& b & Package:& b
Version:& 3 & Version:& 3

Package:& c & Package:& c
Version:& 3 & Version:& 3
Conflicts:& b & Conflicts:& b(=2),b(=3)

Package:& d & Package:& d
Version:& 1 & Version:& 1

Package:& d & Package:& d
Version:& 2 & Version:& 2

Package:& d & Package:&d
Version:& 3 & Version:& 3

Figure 2.1: A distribution (to the left) and its expansion (to the right).

in policy anyway at the time of the EDOS project). Relations between source
packages and binary packages are not of interest for us. However, we have to
take into account Provides (that is, virtual packages), and the fact that rela-
tions may be disjunctive (e.g., a|b|c), and may be qualified by constraints on
version numbers.

We decided to ignore relations that are not essential for a meta-installer
in order to decide about installability. This eliminates Suggests and Enhances
from our list of interesting relations, and we also decided to ignore Recom-
mends relations. Pre-Depends can for our purposes be identified with De-
pends.

This leaves us with Depends and Conflicts. The next question was how
to handle constraints on version numbers like >= 1:2.3.4-5. We decided to
not complicate our model with version numbers and their comparison, and
to expand version constraints: given a package in a package dependency we
replace it by the disjunction of all versions of that package that exist in the
current distribution. In case of a conflict we replace the package by the set
of all versions of that package. An example of that expansion is given in
Figure 2.1.

21

Package:& a & Package:& a
Provides:& v
& & Package:& b
Package:& b & Depends:& w
Provides:& v
Depends:& w & Package:& v
& & Depends:& a|b

Package:& c & Package:& c
Provides:& w & Conflicts:& d
Conflicts:& w
& & Package:& d
Package:& d & Conflicts:& c
Provides:& w
Conflicts:& w & Package:& w
& & Depends:& c|d

Figure 2.2: A distribution involving virtual packages (to the left) and its
expansion (to the right). Version numbers are omitted.

This expansion has the advantage that we get rid of constraints on version
numbers, but it has the drawback that this expansion is always relative to
a set of available packages. This might pose a problem when one wants to
make the expansion incremental. For instance, if the original distribution is
extended by a new version 4 of package d we would have to reconsider in the
expansion all packages that have a relation to d. In our example, that means
that we have to change the Depends line of package a and add |d(=4).

Expansion also introduces explicitly the virtual package which depends on
all packages that provide it. Special care has to be taken with conflicts on
virtual packages as a package may at the same time provide a virtual package
and conflict with it. Section 7.4 of the Debian policy states that in this case
the package conflicts with each package providing that virtual package, with
the exception that the package doesn’t conflict with itself. An example of an
expansion involving virtual packages is given in Figure 2.2.

We can now state the formal definition of a package and a repository:

Definition 1 A package is pair consisting of a name and a version number.

Note that we have not defined what package names and version numbers are,
it suffices for us that we can know when two names or version numbers are
equal (as we assume that we are working with an expanded repository).

22

Definition 2 A repository is a tuple R = (P,D,C) where P is a set of pack-
ages, D : P → P(P(P)) is the dependency function (we write P(X) for the
set of subsets of X), and C ⊆ P × P is the conflict relation. The repository
must satisfy the following conditions:

• The relation C is symmetric, i.e., (π1, π2) ∈ C if and only if (π2, π1) ∈ C
for all π1, π2 ∈ P .

• Two packages with the same name but different versions conflict, that
is, if π1 = (u, v1) and π2 = (u, v2) with v1 6= v2, then (π1, π2) ∈ C.

In this definition, the function D yields for any package the set of all its
dependencies. All these dependencies must be satisfied simultaneously. If
any such dependency is a set with more than one element than this set is
understood as a set of alternatives. The last restriction, stating that two
different versions of the same package are in an implicit conflict, is specific to
Debian (RPM does note have this a priori restriction).

It is now straightforward to translate an expanded Packages file into a
repository according to Definition 2. For the expanded Packages file on the
right of Figure 2.1, for example, we obtain (P,D,C) as follows:

P = {(a, 1), (b, 2), (b, 3), (c, 3), (d, 1), (d, 2), (d, 3)}
D(a, 1) = {{(b, 2), (b, 3)}, {(c, 3), (d, 2), (d, 3)}}
D(b, 2) = ∅

· · ·
C = {((b, 2), (b, 3)), ((b, 3), (b, 2)), ((c, 3), (b, 2)), ((b, 2), (c, 3)), . . .}

Definition 3 An installation of a repository R = (P,D,C) is a subset I of
P , giving the set of packages installed on a system. An installation is healthy
when the following conditions hold:

• Abundance: Every package has what it needs. Formally, for every
π ∈ I, and for every dependency d ∈ D(π) we have I ∩ d 6= ∅.

• Peace: No two packages conflict. Formally, (I × I) ∩ C = ∅.

Definition 4 A package π of a repository R is installable if there exists a
healthy installation I such that π ∈ I. Similarly, a set of packages Π of R is
co-installable if there exists a healthy installation I such that Π ⊆ I.

Note that because of conflicts, every member of a set X ⊆ P may be
installable without the set X being co-installable. One can even show that
not co-installable sets of minimal size can be arbitrary large: Let, for a given

23

number n, Rn be the following repository:

P = {a1, . . . , an, b1, . . . , bn}
D(ai) = {{b1, . . . , bi−1, bi+1, . . . , bn}}
D(bi) = ∅

C = {(bi, bj) | i 6= j}

In this repository, every package ai depends on the disjunction of all packages
bj with j 6= i. Hence, any incomplete collection of packages a is co-installable:
if package ai is a package missing from that collection then we can simply
satisfy all dependencies by installing package bi. Installing all packages a
together, however, would require to install at least two different packages b.
Since any two different packages b are in conflict this is not possible.

The desirable property that we want to ensure for a repository R is the
following:

Definition 5 A repository R is trimmed if every package π ∈ R is installable
with respect to R itself.

In Debian lingo this translates to the fact that no package in the repository
is “broken”, i.e. that there is at least one possible installation in which any
given package is installable. If this is not the case then that particular Debian
distribution will be shipping packages that users will never be able to install.

2.2.2 Results, Tools, and Applications

Result: Installability is NP-complete

Based on the formalization given in Section 2.2.1 one can now quite easily show
that the problem whether a given package is installable in a given repository
is logarithmic-space equivalent to the famous SAT problem. This means two
things:

1. One can construct for any installability problem a SAT problem such
that the former has a solution if and only the latter has a solution
[EDO05, MBC+06].

2. One can construct for any SAT problem an installability problem such
that the former has a solution if and only the latter has a solution
[EDO06].

The “logarithmic space” qualifier means that the construction can be done
with auxiliary memory of size logarithmic in the size of the given problem.
This is necessary to transfer complexity results from one problem to the other.

For instance, in order to translate an installability problem into a SAT
problem we will interpret a package p as a Boolean variable with the intuitive

24

meaning that package p is installed in the chosen solution. Dependencies
are translated as implications: If package p depends on a,b,c|d,e|f (which
would be written D(p) = {a, b, {c, d}, {e, f}} according to Definition 2) then
this translates to the Boolean implication:

p→ (a ∧ b ∧ (c ∨ d) ∧ (e ∨ f))

A conflict, say between packages a and b, is expressed as the formula ¬(a∧ b).
The formula p expresses that the package p has to installed. This encoding
opens the way to using existing SAT solving techniques to the resolution of
installability problems (see Section 2.2.2). Since one has reductions in both
directions one obtains an exact worst-case complexity:

Theorem 1 The problem whether a given package is installable in a reposi-
tory is NP-complete.

On a theoretical level this means that checking installability is infeasible in its
full generality. In practice it means as little as that it is a challenging problem
since in practice one does not encounter randomly chosen repositories. The
repositories we encounter in reality have a quite particular structure. For
instance we will certainly have few packages with a very high number of reverse
dependencies, and a large number with very few reverse dependencies. Indeed,
the implementation developed in the EDOS project is surprisingly efficient
(see Section 2.2.2). This apparent contradiction between theoretical very bad
worst-case complexity on the one hand and the existence of implementations
that are surprisingly fast for selected problem instances is quite common in
computer science.

Tools: edos-debcheck, pkglab and ceve

The edos-debcheck utility (available in Debian in the package of the same
name) takes as input a package repository and checks whether one, several or
all packages in the repository are installable with respect to that repository.
This utility is based on the SAT encoding mentioned in Section 2.2.2 and em-
ploys a customized Davis-Putnam SAT solver [ES04]. Since all computations
are performed in-memory and some of the encoding work is shared between
all packages considered this is significantly faster than constructing a sepa-
rate SAT encoding for the installability of each package, and then running
an off-the-shelf SAT solver on it. For instance, checking installability of all
packages of main testing/amd64 takes only 5 seconds on a dual-core amd64
(emitted warnings about bad package version numbers and other irregularities
are omitted):

edos-debcheck </var/lib/apt/lists/._main_binary-amd64_Packages \
> out

Parsing package file... 1.2 seconds 21617 packages

25

Generating constraints... 2.3 seconds
Checking packages... 1.5 seconds
4.692u 0.324s 0:05.03 99.6% 0+0k 0+0io 0pf+0w

An explanation in case of non-installability is given, see Figure 2.5 for an exam-
ple. We have also developed an RPM version of this tool called edos-rpmcheck.

pkglab is an interpreter for a query language that combines basic queries to
edos-debcheck, resp. edos-rpmcheck, with a functional language which allows
to use constructions like map to manipulate conveniently lists of packages. The
interpreter allows to assign intermediate results to variables. We are planning
for the future a major overhaul of the query language with the goal of making
it more useful as a scripting language for applications like the one described
in Section 2.2.2. The interpreter can load repositories that have been pre-
processed by the ceve parser which can parse and analyze both Debian and
RPM repositories. The Debian package for pkglab is pending while the ceve
package is currently available in experimental.

Application: Finding Uninstallable Packages in Debian

edos-debcheck is currently used to monitor the state of Debian’s distributions
(unstable, testing, stable), as well as Skolelinux and Debian GNU/kFreeBSD.
The results of the analysis are available at http://edos.debian.net/edos-debcheck.

There are different reasons why non-installable packages actually exist in
these distributions. One important reason is that most of the binary packages
are architecture dependent, that is there is one package per architecture. As
a consequence, when accessing the reasons for non-installability of packages
we have to take into account all possible Debian architectures.

The meta-data of a binary package are generated during the package com-
pilation from the meta-data in the source package, and may depend on the
actual compilation environment or conditional code in the source package. As
a consequence, the metadata of a package with the same package name and
version may vary from architecture to architecture.

• The unstable distribution is in fact the staging ground for building re-
leasable distributions. Packages that depend on each other enter this
distribution in an arbitrary order which depends on when a developer
uploads a package, or on when a package is compiled and uploaded by
an autobuilder (these are daemons that compile packages for the various
architectures). For instance, package a may depend on package b, and
the developer of a uploads a package for the architecture i386 while
the developer of b uploads his package for amd64 (he should have tested
package b using a locally built binary package of a on amd64). In this
case, a is uninstallable in the repository for i386 until the i386 auto-
builder daemon uploads the binary package for b. This is illustrated

26

http://edos.debian.net/edos-debcheck

by Figure 2.3, the numbers of uninstallable packages in sid are indeed
varying from day to day.

As a consequence, transient non-installability errors are normal in the
unstable distribution. Persistent errors, however, indicate a potential
problem.

• A package a may depend on package b, but b is not available on all
architectures a is available on. This may be due to the fact that there is
a problem with compiling b on some architectures, or that a has a too
liberal architecture specification.

• A special case of the latter is that a has its architecture set to all. This
indicates a binary package that is in fact the same on all architectures,
and hence exists only once in the package pool. Package a may, however,
depend on a package b which is architecture dependant but does not exist
for every architecture. Introducing a field “Installs-to” in the syntax of
control files (as proposed in Bug report #4367332) would allow to fix
this.

Packages which aren’t installable on any of the architectures of a distri-
bution are more likely due to an error. This may happen with packages
that are installable in some architecture that has been part of a dis-
tribution in the past, but which has been removed since then. Another
possible reason is dependency on a package that had to be removed from
a distribution, for instance due to licensing problems or grave bugs.

Application: Debian Weather

This is more of a fun application. Based on the numbers of the tool described
in Section 2.2.2 a “weather report” of Debian is generated which indicates
the percentage of non-installable packages for the different distributions and
architectures. The interpretation is as follows:

clear < 1%
few clouds 1% . . . 2%
clouds 2% . . . 3%
showers 3% . . . 4%
storm > 4%

An example weather report is given in Figure 2.6. Applets for Gnome and
KDE are available.

The daily updated Debian weather is available on the web at http://
edos.debian.net/weather.

2http://bugs.debian.org/436733

27

http://edos.debian.net/weather
http://edos.debian.net/weather
http://bugs.debian.org/436733

unstable/m
ain:

D
a
te

a
lp

h
a

a
m

d
6
4

a
rm

a
rm

el
h
p
p
a

h
u
rd

-i3
8
6

i3
8
6

ia
6
4

m
6
8
k

...
so

m
e

e
v
e
ry

2
2
/
0
6

9
4
9
(3

2
5
)

1
2
1
(8

0
)

6
0
4
(1

2
6
)

6
0
9
(1

0
3
)

6
1
3
(1

3
2
)

4
4
4
5
(1

3
3
3
)

2
2
8
(1

3
1
)

4
5
6
(1

2
0
)

8
9
4
3
(4

5
8
3
)

...
1
0
2
2
2
(5

1
6
3
)

4
1
(1

2
)

∆
+

2
0
/−

2
+

7
/−

1
1

+
2
2
/−

2
4

+
2
8
/−

8
1

+
2
4
/−

3
4

+
1
0
/−

3
8

+
3
1
/−

7
+

2
6
/−

2
1

+
2
1
/−

1
0

...
+

4
4
/−

5
+

0
/−

7

2
1
/
0
6

9
3
1
(3

1
2
)

1
2
5
(7

8
)

6
0
6
(1

3
2
)

6
6
2
(1

1
7
)

6
2
3
(1

4
1
)

4
4
7
3
(1

3
3
9
)

2
0
4
(1

0
9
)

4
5
1
(1

2
1
)

8
9
3
2
(4

5
8
6
)

...
1
0
1
8
3
(5

1
4
1
)

4
8
(1

2
)

∆
+

4
4
/−

0
+

1
/−

1
+

1
8
/−

7
+

5
2
/−

1
2

+
8
4
/−

0
+

4
4
/−

2
+

5
6
/−

0
+

5
8
/−

0
+

3
4
/−

5
...

+
1
3
/−

2
2

+
0
/−

1

2
0
/
0
6

8
8
7
(2

8
7
)

1
2
5
(7

8
)

5
9
5
(1

2
1
)

6
2
2
(1

0
8
)

5
3
9
(1

1
2
)

4
4
3
1
(1

3
3
7
)

1
4
8
(9

2
)

3
9
3
(1

0
3
)

8
9
0
3
(4

5
8
5
)

...
1
0
1
9
2
(5

1
5
0
)

4
9
(1

3
)

∆
+

9
0
/−

5
+

6
/−

6
5

+
1
7
/−

7
7

+
2
1
/−

1
4

+
1
4
/−

6
3

+
1
5
/−

2
+

1
9
/−

6
5

+
1
3
/−

6
4

+
2
6
/−

1
5

...
+

2
8
/−

9
+

1
/−

2

1
9
/
0
6

8
0
2
(2

7
3
)

1
8
4
(8

3
)

6
5
5
(1

2
9
)

6
1
5
(1

0
9
)

5
8
8
(1

1
3
)

4
4
1
8
(1

3
3
8
)

1
9
4
(9

4
)

4
4
4
(1

0
7
)

8
8
9
2
(4

5
8
3
)

...
1
0
1
7
3
(5

1
4
8
)

5
0
(1

3
)

∆
+

6
/−

0
+

2
/−

7
+

2
/−

1
1
3

+
1
/−

8
+

5
/−

1
8

+
2
/−

2
2
1

+
3
/−

3
+

5
/−

7
+

1
/−

3
7

...
+

1
/−

2
0
7

+
1
/−

0

1
8
/
0
6

7
9
6
(2

7
0
)

1
8
9
(8

7
)

7
6
6
(1

4
5
)

6
2
2
(1

1
4
)

6
0
1
(1

2
0
)

4
6
3
7
(1

3
8
0
)

1
9
4
(9

6
)

4
4
6
(1

0
9
)

8
9
2
8
(4

5
8
8
)

...
1
0
3
7
9
(5

1
8
7
)

4
9
(1

3
)

∆
+

5
/−

0
+

4
/−

8
+

1
1
5
/−

7
6

+
5
/−

6
4

+
0
/−

2
1

+
6
/−

3
+

4
/−

1
+

1
/−

7
6

+
5
/−

5
...

+
2
5
/−

2
+

0
/−

0

1
7
/
0
6

7
9
1
(2

6
8
)

1
9
3
(9

2
)

7
2
7
(1

5
7
)

6
8
1
(1

4
2
)

6
2
2
(1

3
2
)

4
6
3
4
(1

3
7
9
)

1
9
1
(9

3
)

5
2
1
(1

3
2
)

8
9
2
8
(4

5
8
9
)

...
1
0
3
5
6
(5

1
6
7
)

4
9
(1

3
)

∆
+

1
2
/−

1
2

+
1
1
/−

1
+

1
4
/−

5
7

+
1
5
/−

7
4

+
6
7
/−

1
0
5

+
4
/−

3
2

+
4
/−

4
2

+
9
/−

6
7

+
1
6
/−

1
...

+
8
/−

1
9

+
0
/−

1

1
6
/
0
6

7
9
1
(2

6
3
)

1
8
3
(8

2
)

7
7
0
(1

7
5
)

7
4
0
(1

5
4
)

6
6
0
(1

5
6
)

4
6
6
2
(1

3
8
0
)

2
2
9
(9

6
)

5
7
9
(1

4
5
)

8
9
1
3
(4

5
7
5
)

...
1
0
3
6
7
(5

1
7
9
)

5
0
(1

3
)

F
igure

2.3:
Sum

m
ary

of
results

of
running

edos-debcheck
on

unstable/m
ain

betw
een

June
16

and
June

22,
2008.

T
he

architectures
m

ips,
m

ipsel,
pow

erpc,
s390,

and
sparc

are
om

itted
from

this
table

for
lack

of
space.

In
each

day’s
listing,

the
first

num
ber

is
the

num
ber

of
non-installable

packages,
w

hile
the

num
ber

in
parentheses

is
the

num
ber

of
non-installable

packages
that

are
architecture-specific.

L
ines

m
arked

∆
give

the
num

ber
of

packages
becom

ing
uninstallable

the
follow

ing
day

(+
),resp.

that
are

no
longer

uninstallable
(-).

T
his

field
is

colored
red

w
hen

the
totalnum

ber
of

uninstallable
packages

is
increasing,

green
w

hen
that

num
ber

is
decreasing.

R
esults

of
a

current
run

can
be

found
at

h
t
t
p
:
/
/
e
d
o
s
.
d
e
b
i
a
n
.
n
e
t
/
e
d
o
s
-
d
e
b
c
h
e
c
k
/
u
n
s
t
a
b
l
e
.
p
h
p.

28

http://edos.debian.net/edos-debcheck/unstable.php

te
st

in
g/

m
ai

n:

D
a
te

a
lp

h
a

a
m

d
6
4

a
rm

a
rm

el
h
p
p
a

i3
8
6

ia
6
4

m
ip

s
m

ip
se

l
p

ow
er

p
c

s3
9
0

sp
a
rc

so
m

e
e
v
e
ry

2
3
/
0
6

3
6
7
(7

)
1
4
(2

)
2
1
7
(4

)
3
4
8
(2

1
)

3
6
9
(9

)
1
2
(4

)
4
8
(3

)
2
6
7
(3

)
2
6
9
(3

)
2
1
(3

)
5
6
(3

)
2
4
(3

)
6
2
8
(3

2
)

8
(2

)

∆
+

0
/
−

0
+

0
/
−

0
+

0
/
−

1
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

3
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0

2
2
/
0
6

3
6
7
(7

)
1
4
(2

)
2
1
8
(4

)
3
4
8
(2

1
)

3
6
9
(9

)
1
2
(4

)
4
8
(3

)
2
6
7
(3

)
2
6
9
(3

)
2
4
(4

)
5
6
(3

)
2
4
(3

)
6
2
8
(3

2
)

8
(2

)

∆
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

3
+

0
/
−

3
+

0
/
−

0
+

0
/
−

3
+

0
/
−

3
+

0
/
−

0
+

0
/
−

0

2
1
/
0
6

3
6
7
(7

)
1
4
(2

)
2
1
8
(4

)
3
4
8
(2

1
)

3
6
9
(9

)
1
2
(4

)
4
8
(3

)
2
7
0
(4

)
2
7
2
(4

)
2
4
(4

)
5
9
(4

)
2
7
(4

)
6
2
8
(3

2
)

8
(2

)

∆
+

0
/
−

0
+

0
/
−

3
+

0
/
−

3
+

0
/
−

9
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

7
+

0
/
−

3

2
0
/
0
6

3
6
7
(7

)
1
7
(3

)
2
2
1
(5

)
3
5
7
(2

4
)

3
6
9
(9

)
1
2
(4

)
4
8
(3

)
2
7
0
(4

)
2
7
2
(4

)
2
4
(4

)
5
9
(4

)
2
7
(4

)
6
3
5
(3

5
)

1
1
(3

)

∆
+

7
/
−

0
+

3
/
−

0
+

4
/
−

3
+

3
/
−

2
7

+
4
/
−

0
+

3
/
−

0
+

3
/
−

0
+

5
/
−

1
1

+
5
/
−

0
+

5
/
−

0
+

5
/
−

0
+

5
/
−

0
+

5
/
−

1
6

+
3
/
−

0

1
9
/
0
6

3
6
0
(5

)
1
4
(2

)
2
2
0
(6

)
3
8
1
(3

1
)

3
6
5
(8

)
9
(3

)
4
5
(2

)
2
7
6
(2

)
2
6
7
(2

)
1
9
(2

)
5
4
(2

)
2
2
(2

)
6
4
6
(4

2
)

8
(2

)

∆
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0

1
8
/
0
6

3
6
0
(5

)
1
4
(2

)
2
2
0
(6

)
3
8
1
(3

1
)

3
6
5
(8

)
9
(3

)
4
5
(2

)
2
7
6
(2

)
2
6
7
(2

)
1
9
(2

)
5
4
(2

)
2
2
(2

)
6
4
6
(4

2
)

8
(2

)

∆
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0
+

0
/
−

0

1
7
/
0
6

3
6
0
(5

)
1
4
(2

)
2
2
0
(6

)
3
8
1
(3

1
)

3
6
5
(8

)
9
(3

)
4
5
(2

)
2
7
6
(2

)
2
6
7
(2

)
1
9
(2

)
5
4
(2

)
2
2
(2

)
6
4
6
(4

2
)

8
(2

)

st
ab

le
/m

ai
n: D

a
te

a
lp

h
a

a
m

d
6
4

a
rm

h
p
p
a

i3
8
6

ia
6
4

m
ip

s
m

ip
se

l
p

ow
er

p
c

s3
9
0

sp
a
rc

so
m

e
e
v
e
ry

2
3
/
0
6

1
8
4
(0

)
1
3
(0

)
9
6
(2

)
1
8
9
(0

)
0
(0

)
6
7
(0

)
1
8
5
(0

)
1
8
6
(0

)
1
3
(0

)
1
8
3
(0

)
1
4
4
(4

)
2
3
5
(6

)
0
(0

)

F
ig

ur
e

2.
4:

T
he

sa
m

e
st

at
is

ti
cs

as
in

F
ig

ur
e

2.
3

no
w

fo
r

te
st

in
g

an
d

st
ab

le
(o

nl
y

on
e

da
y

sh
ow

n
si

nc
e

no
va

ri
at

io
n)

.

29

Package Since Version Explanation
.

calendarserver 20 Jun 08 1.2.dfsg-3 calendarserver (=
1.2.dfsg-3) depends on
python-twisted-calend...
(>= 0.2.0.svn19773-3)
{NOT AVAILABLE}

camping 21 Jun 08 1.5+svn242-1 camping (=
1.5+svn242-1) depends
on rails {rails (=
2.0.2-2)} rails (=
2.0.2-2) depends on
rdoc (>> 1.8.2) {rdoc
(= 4.2)} rdoc (= 4.2)
depends on rdoc1.8
{rdoc1.8 (= 1.8.7.22-1)}

.

rdoc1.8 21 Jun 08 1.8.7.22-1 rdoc1.8 (= 1.8.7.22-1)
depends on ruby1.8
(>= 1.8.7.22-1) {NOT
AVAILABLE}

.

shoes 21 Jun 08 0.r396-4 shoes (= 0.r396-4)
depends on
libgems-ruby1.8
{libgems-ruby1.8
(= 1.1.1-1)}
libgems-ruby1.8 (=
1.1.1-1) depends on
rdoc1.8 {rdoc1.8 (=
1.8.7.22-1)}

Figure 2.5: An excerpt from the list of uninstallable packages in sid/i386 main
for June 22, 2008. In the explanation field, available versions of a package
are indicated between curly brackets. Lines may refer to packages shown
non-installable elsewhere, like the packages camping and shoes being not-
installable because it need rdoc1.8. Package names written in italics in the
left column have Architecture=all.

Results of a current run can be found at http://edos.debian.net/
edos-debcheck/results/unstable/latest/i386/list.php.

30

http://edos.debian.net/edos-debcheck/results/unstable/latest/i386/list.php
http://edos.debian.net/edos-debcheck/results/unstable/latest/i386/list.php

Stable:

Testing:

Unstable:

alpha amd64 arm hppa i386 ia64 mips mipsel powerpc

Figure 2.6: The Debian weather for June 27, 2008: Mostly sunny in stable
and testing, at places overcast and rainy in unstable.

Application: Finding File Conflicts in Debian

A Debian installation has the concept of files owned by packages. If one tries
to install a new package that would hijack a file owned by another package
this will make (with some exceptions, see below) the installation fail, like this:

Unpacking gcc-avr (from .../gcc-avr_1%3a4.3.0-1_amd64.deb) ...
dpkg: error processing
/var/cache/apt/archives/gcc-avr_1%3a4.3.0-1_amd64.deb
(--unpack):
trying to overwrite ‘/usr/lib64/libiberty.a’, which is also in package
binutils
dpkg-deb: subprocess paste killed by signal (Broken pipe)
Errors were encountered while processing:
/var/cache/apt/archives/gcc-avr_1%3a4.3.0-1_amd64.deb
E: Sub-process /usr/bin/dpkg returned an error code (1)

Our aim is to detect these errors by analyzing the Debian distribution,
hopefully before they actually occur on a user machine.

An obvious näıve solution would be to try to install together all pairs of
packages that occur in the distribution. Debian amd64/testing has currently
about 21.000 packages, that would make about 200.000.000 pairs of packages
to test, which clearly is not feasible.

A first idea towards a better solution is to only consider those pairs of
packages that actually share at least one file. Luckily, the information which
package contains which file is available in the file Contents of the distribution.
This file contains stanzas like

...
bin/fbset admin/fbset
bin/fgconsole utils/console-tools,utils/kbd

31

...
etc/default/nvidia-kernel contrib/x11/nvidia-kernel-common
...

In this file, information is indexed by path names of the files (omitting the
initial slash). For every file a comma separated list of packages containing that
file is given where packages are indicated with their section (a classification
of packages by type, like games or admin), and probably the component if
it is different from main (which can currently be contrib or non-free). For
instance, the file /bin/fgconsole is provided by the packages console-tools
and kbd which both are in section utils. In fact the Contents file that can be
found on a Debian mirror may be slightly out of date as this file is generated
only once per week.

The Contents file of amd64/testing (as of May 2008) contains about
2.300.000 entries. It is a trivial programming exercise to compute from this
file a list of pairs of packages that share at least one file.

Sharing a file does not necessarily mean a bug. There a several reasons
why it may be OK for two packages, say A and B, to share a file, say F:

1. The two packages are not co-installable by the package relationships
declared in their distribution, in the sense of Section 2.2.1.

2. One of the packages, say A, declares that it has the right to replace files
owned by B, by having in its control file a stanza Replaces: B.

3. One of the packages, say B, diverts the file F that it shares with package
A. This means that if package B is being installed on a system already
containing package A then A’s version of file F will be renamed; file F
will be restored to its original name when package B will be removed.
File diversions are declared by invoking the tool dpkg-divert from a
maintainer script which will simply register the diversion request in a
system-wide database. This database is consulted by dpkg when in-
stalling files. Diversions are not declared in the package control file.

We proceed in two stages in order to find the actual file overwrite problems:

1. Co-installability is checked with the pkglab tool (see Section 2.2.2). This
is the only tool that can detect “deep” conflicts between packages. This
first phase gives us a reduced list of pairs of packages.

2. Knowing which files are diverted by a package poses different problems:
diversions are registered by the so-called postinst script of a package,
one of the maintainer scripts that are executed during installation (or
upgrade, or removal) of a package. This leads to two problems:

a) Execution of the postinst script depends on the current state of the
system, and can in general not be described by a simple list of files.

32

b) The postinst script is written in a Turing complete language (usu-
ally Posix shell or bash), which means that exact semantic proper-
ties are undecidable.

For this reason, we try in the second phase to install each of the pairs
of packages remaining after the first phase in a chroot, using apt-get
install. We then search the install log for file overwrite errors.

The following statistics is from the first run performed on April 16th, 2008,
on amd64/sid:

Theoretical pairs of packages according to the distribution 200.000.000
Pairs of packages sharing a file according to Contents 867
Co-installable pairs among these according to pkglab 102
File overwrites detected 27

Checking co-installability with EDOS pkglab took 30 minutes and gave a
88% reduction of the search space. Testing the installation of the remaining
102 pairs of packages still took 2.5 hours. This measures where taken with
a dual-core amd64 at 1.6GHz, using a local Debian mirror access over a fast
LAN.

Detected bugs are tracked in the Debian bug tracking system, and marked
there with user treinen@debian.org and usertag edos-file-overwrite.

2.3 Present and Future: Mancoosi

2.3.1 An Overview of the Mancoosi Project

Mancoosi picks up the baton from where EDOS left it. So, where to go from
EDOS? Even though some of the theoretical achievements of EDOS still have
some way to go before reaching the practice of all distributions (including
Debian), adoption of EDOS results is ongoing and is actually extending past
the distribution universe; a noteworthy example is the Eclipse platform, which
is moving to SAT solving to solve inter-plugin dependencies.

On the contrary, one side of the complexity issues introduced by the over-
whelming amount of packages in GNU/Linux distributions has been neglected
by EDOS and is still in need of both research and tool development: the user
side of a distribution. While EDOS has focused on the distribution editor side
(i.e. on who is actually creating the distributions), Mancoosi focuses on who
is actually using a distribution, in particular system administrators.

It is well-known that distributions raise difficult problems for adminis-
trators. Distributions evolve rapidly by integrating new versions of software
packages that are independently developed. System upgrades may proceed
on different paths depending on the current state of a system and the avail-
able software packages, and system administrators are faced with choices of

33

upgrade paths, and possibly with failing upgrades. All together, these in-
tertwined problems are referred to as the upgrade problem. The Mancoosi
project aims at developing tools for the system administrator that address
the upgrade problem.

What does constitute an upgrade problem from the point of view of a sys-
tem administrator? Intuitively, any possible change to the database of locally
installed packages constitutes an upgrade problem. Such changes are usually
requested to a meta-installer and are well-known to any system-administrator.
Some examples:

• apt-get install wesnoth

• aptitude upgrade cappuccino

• apt-get dist-upgrade

• aptitude purge emacs22

• wajig install vim-full

Each of the above examples poses a simple upgrade problem. Way more
complex upgrade problems can be formed by combining simpler problems
(e.g. posing all the above requests together to a single meta-installer). Yet
more complex problem can be created by exploiting meta-installer specific
features such as requiring specific package versions or origin suites (think at
apt pinning).

A basic principle of the Mancoosi project was that the upgrade process
can be decomposed into two parts: dependency resolution and upgrade de-
ployment. While dependency resolution can be thought of as a static phase,
where without altering the package database a meta-installer has to figure
out if and how to implement the user request, upgrade deployment is more
dynamic and consists of several sub-activities: package download, package
unpacking, maintainer scripts execution . . .

According to this distinction, the two main avenues pursued by Mancoosi
are:

rollback support Upgrade deployment can fail for various reasons easily
encountered in system administrator nightmares (disks running out of
space, 404 while downloading a package, maintainer script failures, file
overwrites among unrelated packages, . . .). Depending on how bad the
error is, a common attempted solution is that of rolling back the system,
partially or completely, to a safe state which predates the upgrade at-
tempt. Unfortunately, support for upgrade attempt rollback is basically
inexistent in state of the art installers. Note that the need for a roll-
back may also occur some time after an upgrade (even days or weeks),
and that in that case one only wants to undo the package upgrade but

34

not any other system changes that have been applied in the meantime.
This means that we are looking for solutions beyond mere file system
snapshots.

Mancoosi aims at developing mechanisms that provide for rollback of
failed upgrade attempts, allowing the system administrator to revert
the system to the state before the upgrade. In particular, rollback is the
topic of Mancoosi work packages 2 and 3.3

dependency solving The first part of the upgrade problem is implemented
by state of the art meta-installers, but each of them has deficiencies
(e.g. incompleteness: the inability to find an upgrade path each time
one upgrade path does exists).

Mancoosi aims at developing better algorithms to plan upgrade paths
based on various information sources about software packages and on
optimization criteria. Dependency solving is the topic of Mancoosi work
packages 4 and 5.

As the authors are only marginally involved with rollback support, that
part of the project will not be discussed any further in this paper. We will for
the rest of this paper concentrate on dependency solving.

2.3.2 Dependency solving

As already mentionend, the overall goal of this part of Mancoosi is improving
dependency solving in state of the art meta-installers, solving some of their
deficiencies. More precisely, Mancoosi plans to address three requirements
which are believed to define the ideal to which any given meta-installer should
tend to: completeness, optimality, efficiency.

Completeness

The first of these requirements can be defined as follows:

Definition 6 A meta-installer is complete wrt. dependency solving iff for
each possible upgrade problem which has a solution, the meta-installer is able
to find such a solution.

Even though not enough details have been given to fully formalize com-
pleteness in this paper, the intuition should be clear: once the system admin-
istrator poses an upgrade problem to its meta-installer of choice, the meta-
installer tries to solve dependencies to fulfill the user request to determine
which changes should be made to the set of installed packages. If a healthy in-
stallation satisfying the user request does exist, then the meta-installer should
be able to propose it as a possible way of fulfilling the user request.

3http://www.mancoosi.org/work.html

35

http://www.mancoosi.org/work.html

Surprising as it might sound, most state of the art meta-installers are not
complete. For instance, upon receiving a request like install p, apt-get
always tries to install the latest version of p among those available in the
package universe formed by APT repositories. In case the version requirements
of (latest) p are not satisfiable it might well be that requirements of (previous)
p are indeed satisfiable. In such and similar cases the user is left with the
feeling that there is no way to satisfy her request, while this is actually not
the case: this is a lack of completeness that should be addressed to improve
user experience with meta-installers.

Note that the given example is just a paradigmatic one, more complex
examples built on top of the limited back-tracking capabilities of other meta-
installers can also be provided [EDO06] (see also http://www.mancoosi.org/
edos/manager.html for an analysis of the situation in the year 2006). The
general point stressed here is that legacy meta-installers which are advertised
as the tools for system-administrators to interact with the package database
of their machines should be able to solve dependency problems each time it is
possible to do so.

Optimality

Once it can be taken for granted that any possible solution to a dependency
problem can be found, it is natural to ask which among all the possible solu-
tions has to be preferred over the others.

Note that for any given upgrade problem there are in general several pos-
sible solutions. If you consider again the install p request posed to apt-get
above, a possible solution for it is to install the version of p whose depen-
dencies are satisfiable together with all its (transitive) dependencies and be
done with that. Another valid solution is to install the same set of packages
together with a package z which is completely unrelated to p and that does
not inhibit a healthy installation. Whereas in these two cases it seems obvious
that the former has to be preferred, in the general case there are non obvious
choices to be made. Anyone who has already been faced with aptitude inter-
active solution discrimination knows that: in satisfying dependency problems
coming from user requests, trade-offs have to be made.

In fact, even before discussing how the optimal solution has to be found
among all alternative solutions of a given upgrade problem, there is a need to
understand which criteria should be used to define the optimality of a given
solution. At the moment some fixed criteria which are likely to address most
user needs are being considered; here is a handful of examples:

• minimize the amount of extra-packages installed with respect to those
explicitly mentioned in the user request,

• minimize the download size of packages required to deploy the upgrade
solution,

36

http://www.mancoosi.org/edos/manager.html
http://www.mancoosi.org/edos/manager.html

• minimize disk usage after the upgrade (a frequent need for Debian-based
embedded distributions),

• upgrade as many packages as possible to the latest available version.

• . . .

Of course different optimization criteria can be in conflict one with an-
other. If on one side this brings the upgrade problem in the vibrating research
field of multi-criteria optimization, it also raises the issue of which interface
should be given to users to specify their optimization preferences. Moreover,
the set of possible optimization criteria should be open-ended as specific user
needs arise every day: APT pinning is a practical example of user requests
that should be taken into account while choosing an optimal solution, count-
less other user-specific requirements can be imagined (e.g.: when you have a
choice among two packages choose the one with less RC bugs, or even blacklist
packages maintained by Random J. Developer as you don’t trust him . . .). For
this reason Mancoosi will also be developing a cross meta-installer language
to specify optimization criteria with a well-defined semantics, to be used by
system-administrators to specify their preferences.

Efficiency

Once it is settled what properties we want from the ability of a meta-installer
to solve dependencies (completeness and optimality), the attention can be
turned to how we would like the given tool to reach a solution . . . and of course
we want it to be efficient in finding it. Even letting aside the optimization
part, dependency solving is per se a NP-complete problem (see Section 2.2.2)
hence we cannot hope for a definitive algorithm or implementation delivering
upgrade problem solution instantaneously in any given case.

Nevertheless we should strive for the most possible efficiency and in this
respect the EDOS results have been encouraging. Mancoosi will focus on find-
ing efficient algorithms which not only take into account package installability
“in the void” (i.e. in some, not specified a priory, installation), but rather
which address upgrades starting from an existing user installation.

2.3.3 A solver competition

Promising to find the most efficient algorithmic solution to the upgrade prob-
lem, implementing both completeness and optimality in the setting of the
Mancoosi project would have been inconsiderate. This is why Mancoosi
chooses a different path: try increasing the sensibility of the relevant research
communities on the upgrade problem. Historically, the organization of peri-
odic competitions has been a training factor in pushing further the state of
the art in algorithms and tools for complex problems such as SAT. Examples

37

like the SAT competition4 and SAT race5 attract yearly research and practi-
tioners willing to challenge their tools with competitors to determine which
is the “best” both in terms of solver capabilities and in terms of execution
speed.

Mancoosi will follow a similar path for the upgrade problem faced routinely
by meta-installers. A competition of dependency solvers will be organized and
is planned to be held in parallel with a research conference on related fields
(SAT-solving, linear optimization, . . .). While it is too early to have detailed
information on how the competition will be run and organized, some aspects
are already clear.

Upgrade problem database To run a solver competition you need a cor-
pus of problems that will be used to challenge the various competitors. In the
Mancoosi case the corpus will be called UPDB for Upgrade Problem DataBase.
The way in which it will be assembled is different from other competitions.
Instead of creating artificial problems by hand (that would be not only chal-
lenging given the typical size of a distribution repository, but also bear the
risk of creating irrelevant problems) the corpus will be composed of problems
submitted by users who encountered these.

All in all, the architecture is similar to that of the Debian Popularity
Contest:6 users interested in participating will be asked to install some special-
purpose packages which provide the software to gather data and submit it to
a central repository. In some cases it will probably be necessary to install
modified versions of meta-installers which have been changed to log enough
information to fully describe an upgrade problem. The architecture of problem
submission to UPDB is depicted in Figure 2.7.

As various distributions are taking part in the Mancoosi competition, each
of them will be providing a staging repository to which problem submissions
will be addressed. One such repository will be set-up for Debian users as
well. As the format of the initial submission is distribution-specific, a further
conversion step into a common format used to encode problems is needed.
Once the conversion has been done, the upgrade problem is fully abstracted
over the origin distribution and can be fed as input to the various solvers
which will be taking part in the competition.

The Mancoosi project will be both organizing the competition (and this
is the topic of work package 5) and participating in it (work package 4) with
a research team which is expert in SAT solving and optimization techniques
and which will be developing ad-hoc algorithms for the upgrade problem as
faced in distributions.

4http://www.satcompetition.org/
5http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/
6http://popcon.debian.org/

38

http://www.satcompetition.org/
http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/
http://popcon.debian.org/

Figure 2.7: Data flow of UPDB submissions, from users to the corpus of
problems for the competition

Types of competitions Different kinds of competitions will be held. In
the beginning it is planned that the optimization criteria will be fixed and
each competitor will specifically be participating in a selection of them. For
example it is likely that we will be having categories like: no optimization
(just solve the upgrade problem no matter what), minimize the download size
of required packages, minimize disk usage, and so on.

Upgrade Description Formats As it can be observed in Figure 2.7, dif-
ferent format specifications are required before being able to start collect-
ing upgrade problems from users (that notwithstanding specification imple-
mentations, which will be required as well). Such specifications are work
in progress and are available in the Mancoosi public repository available at
http://gforge.info.ucl.ac.be/plugins/scmsvn/viewcvs.php/trunk/updb/doc/cudf/?root=mancoosi.

The first specification DUDF (Distribution Upgrade Description Format)
is meant to describe the format used for the actual submission of upgrade prob-
lems from user machines to the repositories set up by each distribution inter-
ested in collecting upgrade problems. As the format is in the end distribution-
specific, the specifications describe the overall structure and basic principles of
a submission document, the actual details will be filled in by each distribution
according to the user installers and meta-installers. Interested distributions
are encouraged, once the final version of DUDF will be ready, to publish notes
describing exactly how they are implementing the distribution-specific part of

39

http://gforge.info.ucl.ac.be/plugins/scmsvn/viewcvs.php/trunk/updb/doc/cudf/?root=mancoosi

DUDF.
Roughly, a DUDF document has the following parts:

1. local package status on the user machine

2. current package universe as known to the meta-installer

3. requested action

4. user desiderata (i.e. optimization criteria)

5. various identifiers (e.g.: distribution identifier, installer name and ver-
sion, meta-installer name and version, . . .)

6. outcome of the meta-installer (a new local package status in case of
success, a failure message otherwise)

A hypothetical (and incomplete) mapping to Debian for the apt-get, just
to give a practical intuition of what can constitute a DUDF submission, is as
follows:

1. /var/lib/dpkg/status

2. the set of APT binary package lists as stored under /var/lib/apt/lists/

3. the given APT command

4. current APT pinning settings

5. “debian”, “apt-get”, vx.y.z, “dpkg”, . . .

6. “broken packages, the following packages can not be installed,”

As sending all the above information can be costly in terms of submis-
sion size, DUDF implements some space-optimizations. The most important
optimization is based on the assumption that most package lists composing
a given package universe are usually only mirrored on a local machine and
are available elsewhere. Hence, by keeping distribution-specific historical mir-
rors of a given distribution, instead of sending whole package lists, a DUDF
submission may just contain package list checksums that can later be looked
up in historical mirrors to recreate the package lists as available on user ma-
chines. In the specific case of Debian, Mancoosi will be keeping historical
mirrors of APT lists for the most widespread apt-get repositories: not only
the official stable/testing/unstable Debian suites, but also volatile, backports,
debian-multimedia, . . .

The second, and last, document format involved with the solver compe-
tition is CUDF (Common Upgrade Description Format). That is the format
in which the actual inputs from competition participants will be encoded in.
Contrary to DUDF, CUDF is distribution agnostic as well as agnostic to any
specific installer or meta-installer. A requirement for any given DUDF doc-
ument is that it can be converted to CUDF, during that conversion step all
performed space-optimization will be expanded to obtain a self-contained de-
scription of an upgrade problem.

40

2.3.4 Debian and Mancoosi

As already mentionend there is no “official” relation between the Mancoosi
and Debian projects; however, there are Debian developers in the ranks of
Mancoosi which are interested in giving back to Debian as much as possible
of Mancoosi achievements. This section lists the foreseeable points of contact
between Mancoosi and Debian, it also points to the available resources for
interacting with Mancoosi from the Debian side.

Probably the main point of interest for Debian in Mancoosi is the possi-
bility to improve the available algorithms and tools for dependency solving,
both from the point of view of performance and the point of view of capa-
bilities. To be delivered in Debian, the possible forthcoming achievements
will need cooperation among the algorithm developers and the developers of
meta-installers used in Debian (apt-get, aptitude, . . .). The Debian devel-
opers involved in Mancoosi have already taken contact with members of the
respective development teams. Collaborations are needed mainly in two areas:

common solver API It is unlikely that Mancoosi will have the energy to
port novel dependency resolution algorithms to multiple meta-installers,
it is more likely that only a proof of concept implementation for a sin-
gle tool will be developed. As Debian is also about diversity, it would
be preferable to have implementations for all the mainstream meta-
installers. To this end a side-result that will be pursued is the develop-
ment of a common API to let whatever meta-installer interact with an
external dependency solver. This way it would be possible to develop
separately meta-installers and plug them into different tools. Such an
achievement, if reached, would also mean that it will be possible to
exchange solvers which already exist among different tools, gaining flex-
ibility in the overall package manager implementation.

dependency solving logging Once the specification of DUDF will be fi-
nalized, its implementations will basically consist of patches (or plugins,
where feasible) for meta-installers enabling them to save in DUDF for-
mat solving attempts originated from upgrade problems. As it will be
beneficial to have a common format for logging such attempts (e.g. for
bug reports against apt-get, aptitude, . . .) we hope to spread DUDF
implementations in whatever meta-installer is currently used in Debian.

On a less implementative side, Mancoosi is welcoming comments from the
Debian community on all aspect of the project. In particular, at the time of
this writing we are interested in comments on what will constitute interesting
optimization criteria as those anticipated in Section 2.3.2. The corpus of
collected optimization criteria is likely to be used as the set of categories to
run the first solver competition. Do not hesitate to get in touch with the

41

Mancoosi project if you have suggestions on this topic or on anything else
related to the project!

To get in touch with Mancoosi there are various ways.

• The official website gives general information on the Mancoosi project,
it is available at http://www.mancoosi.org

• The mailing list to archive public discussions about Mancoosi is mancoosi-
discuss: http://sympa.pps.jussieu.fr/wws/info/mancoosi-discuss

• Then there are also Debian-specific contacts

– http://mancoosi.debian.net has been set-up as a web archive of
resources for the Debian project offered by Mancoosi. At the mo-
ment it just contains the historical mirror of APT’s binary package
lists which will be used to implement the space-optimization of
DUDF.
It also contains an apt-get repository of unofficial Debian packages
meant as a staging area for packages not (yet) accepted in the
Debian archive, or simply not suitable/interesting enough for it.

– the email contact debian@mancoosi.org is the main contact to
get in touch with Mancoosi for Debian-related issues, questions,
comments . . . Drop a mail to it for more information!

42

http://www.mancoosi.org
http://sympa.pps.jussieu.fr/wws/info/mancoosi-discuss
http://mancoosi.debian.net
debian@mancoosi.org

Bibliography

[EDO05] EDOS Project Workpackage 2 Team. Report on formal manage-
ment of software dependencies. EDOS Project Deliverable Work Pack-
age 2, Deliverable 1, September 2005. http://www.edos-project.org/
xwiki/bin/Main/Deliverables.

[EDO06] EDOS Project Workpackage 2 Team. Report on formal manage-
ment of software dependencies. EDOS Project Deliverable Work Pack-
age 2, Deliverable 2, March 2006. http://www.edos-project.org/
xwiki/bin/Main/Deliverables.

[ES04] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In
Enrico Giunchiglia and Armando Tacchella, editors, Theory and Ap-
plications of Satisfiability Testing, 6th International Conference, SAT
2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, volume 2919 of Lecture Notes in Computer Science, pages 502–
518. Springer, 2004.

[MBC+06] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jérôme
Vouillon, Berke Durak, Xavier Leroy, and Ralf Treinen. Managing the
complexity of large free and open source package-based software distri-
butions. In ASE 2006, pages 199–208, Tokyo, Japan, September 2006.
IEEE CS Press.

43

http://www.edos-project.org/xwiki/bin/Main/Deliverables
http://www.edos-project.org/xwiki/bin/Main/Deliverables
http://www.edos-project.org/xwiki/bin/Main/Deliverables
http://www.edos-project.org/xwiki/bin/Main/Deliverables

Chapter 3

Best practises in team
package maintenance

Gregor Herrmann

Abstract

Team maintenance for (groups of) packages is en vogue; dozens or
perhaps hundreds of packaging teams care for a subset of the Debian
archive in a collaborative style. This BOF offers the opportunity for
members of different packaging teams to exchange their experiences,
share their success and problem stories, and in general learn from each
other.

3.1 Introduction

If you are an active member of a team that collaboratively maintains packages
in Debian and you plan to attend the BOF “Best practises in team package
maintenance” during DebConf8, please take a few minutes to think about the
following questions.

The BOF will start with short presentations (just a couple of minutes)
along these questions, ideally one contribution by each team with members
present; these presentations are not intended to be formal in any way, but
instead to inform the other participants about the various teams and to serve
as a basis for discussing points of common interest.

If you have a chance to discuss your team’s mini-presentation with other
team members (before DebConf or in Mar del Plata over a nice cup/glass of
$preferred_drink)—even better!

44

3.2 Questions

3.2.1 Basics

• Name of the team

• Area of work

• Approximate number of members

• Approximate number of maintained packages

3.2.2 Work flow

Communication

• main/preferred ways of communication within the group (mailing list,
IRC, commit messages, web platform, . . .)

Members

• How do you recruit and integrate new members?

• How does mutual support work?

• Is there some formal ”team leadership”?

• Do you use the ”Debian Maintainer” concept?

Review/uploads/sponsoring

• How do you handle reviewing/uploading packages which are prepared
by non-DDs?

Infrastructure

• Where/how do you keep your packages (version control, . . .)?

Policy/rules

• Do you have written/unofficial guidelines for your packages?

• How do they work out in practise?

Tools

• Do you use any ”unusual” tools in your work (scripts, web apps, . . .)
that help you with regard to upstream releases, bugs, packaging itself,
. . . ?

45

3.2.3 Experiences

Best practises/successes

• Is there something you can share with other teams that works just great
for your team and might help others?

Challenges/failures

• Is there something you’re not happy about in your team and where you
would appreciate input from other teams?

3.2.4 Other teams/Debian

• Is there a need for improving communication/cooperation with other
teams? How?

• Do you have any common projects in mind that might help all packaging
teams?

• Is there something with regard to the relationship between Debian Policy
and teams you would like to see changed?

46

Chapter 4

Custom Debian Distributions

Andreas Tille

Abstract

The idea of Custom Debian Distributions was born at DebConf 3
in Oslo and has turned now into a solid tool set that can be used to
organise packages targeting at a specific work field inside Debian in a
quite efficient way. After five years it is time for a report about status
and success as well as continuing to spread the idea amongst people to
enable them to spend a minimum effort for the adoption of the tools to
get a maximum effect in maintaining a CDD.

One goal of Custom Debian Distributions is to form a group of De-
bian developers who care for a specific set of packages that are used in
the day to day work of a certain user group. The fact that Debian has
grown to the largest pool of ready to install packages on the net has led
to the side effect that it is hard to maintain for beginners. A Custom
Debian Distribution adds some substructure to the currently flat pool of
15000+X packages without a user oriented structure. These substruc-
tures are intended to put a focus on special user interest. These sub-
structures are not based on technical matters like Debian installer team,
porting teams or teams that are focussing to implement programming
language policies.

There are some similarities to Debian-i18n which also has the pure
goal to serve the needs of certain end user groups with the difference
that the users are grouped not according to their field of work but ac-
cording to their language. In fact it makes even sense to create CDDs
for languages that require certain technical means to optimally support
the language regarding direction of writing, special fonts etc. It is known
that some countries in Asia builded Debian derivatives for this purpose
but in principle it is not necessary to derive - the better solution is to
make Debian more flexible by starting a CDD effort inside Debian.

The talks will give some examples from the success of CDDs like
Debian Edu and Debian Med. One very important outcome of the CDD
effort is the ongoing reunification of Linex - the Debian derived distribu-
tion that is used in all schools in Extremadura - with Debian Edu. This

48

step means that Debian gets a very large implementation in all schools of
Extremadura while on the other hand the effort of development for the
people who invented Linex will be reduced. Debian featuring Debian Edu
now has a very good chance to become a really good international school
distribution because it has roots in five countries (Norway, Spain, France,
Germany and Japan) and might become attractive for many more.

The success stories of CDDs would not have been possible outside
Debian and thus leaving the path to build Zillions of Debian derivatives
that reach a very small user base and working together inside Debian
is the main idea of the talk. To make this idea more attractive in the
second part of the talk a description of tools that were developed in the
CDD effort will be presented. Especially the newly developed web tools
that give a good overview about the packages that are useful for a certain
field of work and the QA tools that enable the CDD team members to
easily get an overview about packages that need some action. So if people
are not yet convinced that a CDD for their purpose makes sense we will
catch them by the tools they might get for free if they follow the proposed
strategy.

4.1 Symbiosis between experts and developers

As it was explained in last years CDD talk the basic goal of Custom Debian
Distributions is to enable the user to focus on the packages that are really
needed for his day to day work leading him friendly through the jungle of
Debian’s > 15000 packages. A user that is working in a certain field is only
interested in a defined subset of packages and the CDD that is concerned
about this field tries to prepare the computer optimally to install this subject
with adapted configuration and easily accessible applications. So CDDs are
taking care of groups of specialised users turning Debian into a useful tool
adapted to their requirements for day to day work and making it to the dis-
tribution of choice for their use cases. It should enable and easy installation
and automatically configuration whenever possible to make the needed work
to fit the intended purpose as small as possible.

The tricky part in developing a CDD is now to tie a solid network of Debian
developers, upstream developers (“developing experts”) and users (experts in
a defined field). It has turned out that gathering upstream developers into a
CDD team is quite often not very hard. There are several upstream developers
who try to become Debian Maintainer status - a concept which turned out to
be quite successfully. The rationale behind this is if it comes to field specific
software it is often written by experts in this field to solve the tasks of their
daily work. Observations have shown that this software while showing great
features regarding the task which should be solved there are often weak parts
in the build system or in the general handling of using libraries or wide spread
tools. This is exactly the point where Debian developers have good experiences
and are able to provide technical help.

49

So it happens quite often that upstream developers of field specific appli-
cations are quite happy if Debian developers want to build Debian packages of
the software because they anticipate enhancements of their build system and
a security audit. Last but not least they expect a wide distribution of their
work to reach a large user base easily.

4.2 Attracting people by providing interesting
technical base

The acceptance of new methods is drastically higher if the techniques provided
are convincing enough and provide interesting features for the target audience.
Considering this we tried to develop simple ways to categorise packages that
are useful for certain tasks. This is done in so called tasks files which are
processed using the cdd-dev package to build metapackages. The other appli-
cation of these tasks files is building internationalised web pages which display
the packages that are relevant for a certain CDD task with the descriptions of
the packages. The translation for the descriptions are drawn from the Debian
Description Translation Project and the more complete the DDTP translation
of packages that are relevant for a CDD are the better is the translation of
the web pages featuring the CDD tasks. Thus by adding another use case of
DDTP translations the effort might become additional participants and the
quality of translations - especially those of specific packages which need some
expert knowledge for proper translation - might increase.

The internationalised web pages which are generated automatically out of
the information inside the tasks files is a key documentation feature which
is a really helpful tool for developers of the CDD as well as very informative
for users because they immediately get an overview about all ready to install
software that might be helpful for their day to day work. Thus we try to
promote these pages as the main entry point for information for our users
what we have done, which work is in progress and what’s on our TODO list.
This information might give them a good motivation to join the project. The
first step might be to provide better translations for the package descriptions
which is certainly a task which is better done by experts using the package
themselves instead by Joey Randomtranslator who tries his best in a word by
word translation but if he does not know the real usage of the package it is
hard to provide a really useful translation.

Once we were able to rise users interest they might be interested to do the
next step to install and try the packages in question. This is the point where
the upstream developer of the software becomes a new user which might report
bugs or give hints for enhancements and might become a coworker finally. This
way Debian, or more specifically the CDD that supports the specific field, has
helped to increase the user base of a software and thus the potential developer
base.

50

http://ddtp.debian.net
http://ddtp.debian.net

The process to establish a certain piece of Free Software described above
seems to be quite straightforward but without a linking instance like a CDD
in between upstream developer and users the propagation of specialised Free
Software is often everything else than straightforward. If the idea of Free
Software reaches a specialist who is working on a specific solution he is happy
to release the code on his private web page – and that it is just there. It is
not very common to use well known source code repositories like Savannah or
SourceForge or even implementing a version control system to promote group
development. In contrary if an other specialist is seeking for a solution for the
same problem he has to invent extended Google queries to find the project in
question – if he has the idea to seeking and before he is starting simply from
scratch.

Some volunteers have realised this situation and provide extensive link lists
either on static HTML pages or Wikis to enable others to join the catalogue
effort. The problem here is that these link lists are often incomplete and what
matters even more are not directly connected to immediately installable and
executable binaries.

There are some similar efforts like CDD in other distributions for instance
there is a comparable effort to package biological Free Software done by Gen-
too or FreeBSD because also other distributors realised the problem described
above. The difference between such kind of installable software collections
and a CDD is that a Custom Debian Distribution tries to do more than just
packaging specific software. It is rather about forming a team of maintain-
ers who try to build a consistent system around several tasks in a specific
field, care for easily installation using metapackages, making sure that every-
thing works together smoothly and working actively as missing link between
upstream developers and users.

4.3 CDD is more than packaging specific software

The main work of a distributor is providing precompiled binaries of Free Soft-
ware, caring for smooth installation and upgrades as well as security fixes for
the distributed packages. In the case of Debian which maintains the largest
pool of ready to install binary software packages this is quite a large amount
of work. The huge amount of software includes larger subset of software for
very specific use and this is the playground of CDD packaging teams who
closely work together to bundle their competence on packages with a specific
user base.

It turns out that there is a good chance of cooperation between CDDs on
a technical level because several jobs to do are at least similar. This idea is
the basis of the whole CDD effort: Making sure that the wheel that drives a
certain CDD is only invented once and adopted for all others. There is a similar
situation in the internationalisation teams: There is a well defined group of

51

http://savannah.gnu.org
http://sourceforge.com
http://kambing.ui.edu/gentoo-portage/sci-biology/
http://kambing.ui.edu/gentoo-portage/sci-biology/
http://www.freebsdsoftware.org/biology/

users (speakers of a certain language) who need special support (translations
at various places) and it make sense if language teams just work together and
use common tools like DDTP server and others.

While this translation work is one part of the internationalisation team
it can not stop here. It is also about proving that Debian is flexible enough
to incorporate this kind of changes instead of forcing users to make language
based forks of Debian. Unfortunately there are many people out there who
feature a wrong concept of using Free Software. They read the license as they
are allowed to modify the software as modifying their local copy and tweak it
until it fits their needs. They treat this constant forking as the normal way to
customise their distribution. The internationalisation team has done a good
job in propagating the idea that it is better to include translations into Debian
than adding translations over and over for every new release of Debian.

In principle the maintainers of a CDD have the same job: Attracting
derivers who have not yet understood the power of internal customisation
inside a CDD to reach their goal – optimal support of their users – more
efficiently. The most convincing example how a CDD managed to merge a
derivative back to Debian is that the educational branch of LinEx is working
on unification with Debian Edu since end of year 2007.

4.4 Techniques

The techniques used are based on sorting certain packages of the Debian pool
into certain remits or in the terminology we have chosen in CDDs “tasks”.
So the tasks files are listing dependencies from Debian packages and different
tools are using these as common source of information.

4.4.1 Building metapackages and tasksel descriptions

The cdd-dev can be used to build a set of metapackages and tasksel descrip-
tions. Because the technique is described in very detail in the article about
CDD there is no need to repeat the content here. I would rather ask you to
follow the link and especially read section 6.1 Metapackages.

The build process using cdd-dev also included the creation of a CDD-tasks
package which contains information for tasksel to enable the tasks of a CDD
via tasksel.

4.4.2 Web pages based on common scripts

A quite new feature are the web pages that are builded based on the very same
information that is used to build the metapackages. This enables users to get a
very quick overview because they see all packages included in the task together
with the description. Because the target audience does not necessarily is
comfortable with English language the descriptions are even translated in case

52

http://www.linex.org
http://cdd.alioth.debian.org/cdd
http://cdd.alioth.debian.org/cdd

there is such a translation provided by the Debian Description Translation
Project. Such pages are available for the following projects:

• Debian Edu

• Debian GIS

• Debian Junior

• Debian Med

• Debian Science

In addition to the packages existing inside Debian there is an easy way to
specify prospective packages that should be included into Debian in the future.
These packages are listed on the web pages as well. To read more about this
feature just have a look into the article about CDD especially section 8.1
Existing and prospective packages.

There is no need to copy the information of the just existing article about
CDD which is continuously updated and thus this document ends here with
the strong recommendation to read the technical details there.

53

http://ddtp.debian.net
http://ddtp.debian.net
http://cdd.alioth.debian.org/edu/tasks
http://cdd.alioth.debian.org/gis/tasks
http://cdd.alioth.debian.org/junior/tasks
http://debian-med.alioth.debian.org/tasks
http://cdd.alioth.debian.org/science/tasks
http://cdd.alioth.debian.org/cdd

Chapter 5

The Debian Videoteam —
Behind the Scenes

Holger Levsen, Herman Robak, and Eric Dantan Rzewnicki

Abstract

The talk will cover the hardware, software and manpower required
for a typical dvswitch usecase. Some caveats and challenges regarding
sound, lighting and rigging will be discussed, and live demonstration of
dvswitch in use will be given.

5.1 Introduction

People We would like to bind up as few people as possible in the video
team. Our activity is a service, not a playful hacking thing.

Post production takes for ever, if it ever happens. We strive to get as much
as possible done instantly.

Hardware The hardware should be cheap and light. Commodity hardware
is more convenient than specialty hardware. Two non-commodity pieces that
we now consider ”must have”: Scan converter (VGA to DV) and wireless mic.
The laptops and the DV cameras can be borrowed by/from participants or
the local team.

Software The software should be a minimal set of packages running on
Debian Stable. Dvswitch fits that bill.

TODO Talkback: The camera operators should have headsets, and receive
oral instructions from the mixer operator/producer.

Tally lights: The cameras should have a red lamp telling everyone (espe-
cially the camera operator) when they are ”on”.

54

Caveats Lighting problems. Good room lighting should provide a comfort-
able light level and adequate light for cheap cameras, and still not wash out
the projector screen. More often than not, this is not the case.

Lighting workarounds. Spot light on the speaker, turn off the rest during
the talk. Turn the lights on again for the Q&A session, assuming the screen
won’t be much needed then.

Recording the sound from the audience takes some care. We want reactions
from the audience to be audible, but general murmur and air condition noise
should be cut out.

The crowd cam should see everyone in the audience. This may require a
tall platform, or (fancy!) a jib arm.

5.2 What the software does

dvsource Grabs video from a DV camera over firewire, and sends it over TCP
to the dvswitch. Dvswitch may run on a different computer, usually
nearby.

dvswitch The heart of the system is dvswitch.

dvsink Receives the output from dvswitch

5.3 Live demo

• Show the hardware

– Laptops

– Cameras, tripods, firewire

– Scan converter

– Switch, ethernet cable

– Sound mixer

• Show the setup

– Speaker cam, head mic

– Crowd cam, crowd mic

– Cabling (gaffa, gaffa, gaffa)

• Demonstrate editing

– Recursive video (gag)

– Cutaways (let the cam-op frame the shot)

– Eye direction (when two shots won’t intercut well...)

55

– Sound level (open and fade out crowd mic)

– PiP? Text overlays?

– Disorienting each other and the stream team (gag)

– ”Do you have goatse there?”

56

Chapter 6

DebConf9 Caceres

César Gómez Mart́ın, José Antonio Recio Cuesta, Carmen
Cordero Mata - Centro de Nuevas Iniciativas

Junta de Extremadura - FUNDECYT

{cesar.gomez,anto.recio,carmen.cordero}
@{juntaextremadura.net}

Abstract

In 1997 Extremadura started working on the Regional Strategy of
Information Society of Extremadura (Infodex European Project) and in
1998 the President of Extremadura proposed a strategy for the regional
development model taking advantage of the possibilities offered by the
New Information and Communication Technologies. The strategic ac-
tions were: 34 Technological Literacy Centers, 1 PC per two students
in 2005, 60 new enterprises created in a business incubator and 1 busi-
ness fair per year to promote e-commerce. To be able to achieve those
purposes Extremadura needed adaptability, economy, feasibility, security
and universal access of citizens to the tools. That is the reason why a
free software based operating system called gnuLinEx and based in De-
bian was chosen. Extremadura is obtaining benefits from Debian and
wants to contribute back organizing worksessions like the ones held in
Extremadura during 2006, 2007 and 2008. These sessions are made possi-
ble by the gnuLinEx team who arrange government sponsorship to cover
attendees’ costs and taking care of all the logistical, accomodation, food
and hacking needs. We think that DebConf9 in Cáceres (Extremadura)
will be very helpful for Debian and for gnuLinEx as well.

6.1 Introduction

Extremadura is a 41, 634km2 region located in the south-west of Spain, near
the Portuguese border, with over a million inhabitants. Extremadura is in

58

the middle of a triangle formed by Madrid, Seville and Lisbon, that is the
reason why its location is very important for all the communications between
the three biggest cities in the south of the Iberian Peninsula. Its population
density is 26 inhabitans/km2, it is not a high density when compared to
the population density of Spain (88.59 inhabitants/km2) or European Union
(112 inhabitants/km2). Apart from services (60%), farming is the second
sector employing workers, with 16.6% of all employed persons in the region.
To understand the situation of Extremadura, it is necessary to remark that
Extremadura is also the poorest region of Spain with an unemployment rate
of 16%.

The regional economy has improved in the last years, being the Span-
ish Region which has been converging at a faster pace with other economies
within the European Union, in the 1985-1999 period. Extremadura has bene-
fited from the European Union Cohesion Funds and has used them to imple-
ment several projects regarding education, social issues and businesses. These
projects, in order to make the Region catch up with the Information and Com-
munication Technology Revolution, are favouring its development on the basis
of equality and freedom, and are preparing it to firmly face all the changes
the Knowledge Revolution will spark.

6.2 Information Society Project in Extremadura

In 1997 the regional government of Extremadura started working in the artic-
ulation of a Regional Strategy of Information Society for Extremadura with
the creation of the Infodex European Project, an organization financed in
equal parts by the regional government of Extremadura and the Structural
Funds under the Regional Information Society Initiative (RISI). Infodex was
aimed to study the situation of Extremadura and to identify all the require-
ments to develop an IT strategy. Juan Carlos Rodŕıguez Ibarra, the President
of Extremadura’s Regional Government proposed in 1998 a strategy for the
Regional Development Model taking advantage of the possibilities offered by
the ”New Information and Communication Technologies” (NICT’s). In 1999,
Infodex, designed the ”Director Strategic Plan for the Development of the
Information Society in Extremadura”. Design, within the Regional Strategy,
of a Technological Framework, a Strategic Framework. The consolidation of
this global project, both in the education context, supporting the creation of
technologically-based businesses and promoting an ambitious plan for Techno-
logical Literacy, reached to the point in which, keeping a successful framework
required to depend on an external factor, such as used software. This situa-
tion led to the creation of gnuLinEx: the need to have a software that allowed
completing a project we could fully control; and this could only be made us-
ing free software. Therefore, gnuLinEx is not a product born by chance or
spontaneously, but rather by the need to fulfill a double goal: on one hand,

59

an educational goal to contribute to the development of the Red Tecnológica
Educativa (Educational Technological Network), with a ratio of one computer
for each two students in all the schools of the region; on the other hand,
to an economic and social goal that consists on spreading free software in
Extremadura, through the Plan de Alfabetización Tecnológica (Technological
Literacy Plan). The availability of a fully functional software that can be
copied and distributed legally, helps to overcome economic barriers, such as
the high costs of software licences.

6.3 gnuLinEx

6.3.1 Educational System

In order to improve the quality of the Educational System, the Regional Min-
istry for Education, Science and Technology incorporated the Information
Society into the Regional Educational System while the local Government im-
plemented the Regional Intranet. The key lies in training, the elaboration
of contents by teachers, the upgrading of new schools built by the Regional
Government and the creation of our own free operating system. The training
courses on ICT’s have been carried out all through the region, and have been
mostly a responsibility of the Teachers and Resources Centres. These courses
have been running since 1999, and have reached 80% of teachers in the region,
both physically present or online. Obviously, since gnuLinEx was introduced,
training users became one of the main factors, so that they could get the
basic knowledge to work with it and to look for its pedagogical possibilites:
image processing, multimedia, etc. The usage of a completely free software,
developed through the Internet by persons who share an enormous spirit of
collaboration, has a remarkably high value for students. In other words: the
idea of using a computer that works thanks to the existence of people who
share their knowledge has a great educational value. Regarding the infrastruc-
ture, ever since the Regional Ministry for Education, Science and Tecnology
took over the local education jurisdiction, the number of schools using the
ITC’s has been on the rise. Modern classrooms are bigger than the tradi-
tional ones, so that special desks can be used in order to achieve the ratio of
one computer for every two students. The need to achieve a complete control
of the whole array of computers the Educational Network involves, to look
for a stable and powerful system and to have a kind of software that can be
updated without having to rely on third parties, while lowering the costs to
a minimun, made the Regional Ministry for Education, Science and Tecnol-
ogy decide to use free software and to develop gnuLinEx, the only software
installed in all the schools.

60

6.3.2 Public Administration

The Governmental Board of the Junta of Extremadura has approved an agree-
ment that states that the electronic information generated and aimed at the
interchange in all the departments and bodies that make up the Junta de Ex-
tremadura must use standard formats in a compulsory way.
- Open Document Format for office suite applications (OASIS Open Docu-
ment Format, norm ISO/IEC DIS 26300), for information being created and
undergoing administrative processes.
- Portable Document Format, PDF/A (ISO 19005-1:2005), for information
where guaranteed unalterable visualization is required.
With this important agreement, the Junta de Extremadura is the first admin-
istration to adopt Open standards that all international organizations related
to ITCs agree to refer to as the most important step to favour technological
innovation, reduce the dependency of users, companies and Public Admin-
istrations on non-compatible, proprietary applications, and increment inter-
operability amongst systems and applications on a global level. The board
has also approved that, as from now, all computer tools for personal produc-
tivity used by the staff of the Junta de Extremadura will be free office suite
implementations that must support natively the established standards. Also,
the designated operating system of obligatory use on all workstations of the
staff of the Junta de Extremadura will be a derivative of gnuLinEx called
LinEx SP. The board agreed on a gradual migration on said workstations of
all administrative departments that make up the Junta de Extremadura. The
deadline for the completion of the migration has been set one year from the
ratification of the agreement. After one year, all the workstations of the staff
of the Junta de Extremadura must be working fully and exclusively under
gnuLinEx and any additional software in use must be open source software
and be distributed under a free license.

6.3.3 Health and Care System

The Jara Project was aimed to link all the central services of the Health and
Care System of Extremadura (SES), 10 hospitals, 104 health care centres and
more than 300 centres in rural areas. This project had to build a system which
will have to deal with more than 13,000 persons that work for the Health and
Care System of Extremadura so it had to be adaptable, economical, secure
and feasible. That is the reason why Linux Servers and gnuLinEx in the clients
were chosen. This system is already working in a couple of Hospitals and will
be soon spread to the rest of the Health and Care System of Extremadura.

61

6.4 Network in Extremadura

6.4.1 Regional Intranet

The Infodex project was also very valuable to identify the lack of good commu-
nications in Extremadura. Since Extremadura is a very wide and rural area,
telecommunication companies did not want to deploy a good infraestructure
to communicate the different villages of Extremadura because it was not prof-
itable for them, like it was in Madrid, Barcelona or regions with a bigger
density of population. To solve this issue, in December 2000, the regional
goverment decided to build a corporative telecommunication network in order
to connect more than 1,500 points of the regional administration, including
hospitals, schools (more than 700 centres), libraries and other public build-
ings. The minimum speed of the Regional Intranet is 2Mbits/sec but now
most of the links have a minimum bandwidth of 32Mbits/sec. By making a
high bandwidth network available to all the schools of the region, the Regional
Goverment has guaranteed that these infrastructures reach every municipality
of the region, even the smallest villages. These infrastructures wouldn’t have
arrived there so early by the means of the market itself. The most outstand-
ing objective reached through the deployment of the Board of Extremadura’s
Intranet is the integration of all corporate communications of the Board of
Extremadura in a single contract with a consequent improvement of service
quality and costs. It also favour the development of Information Society in
Extremadura, constitute a true corporate Intranet, improve the quality of
administrative services, develop the telecommunication infrastructures in Ex-
tremadura and exploit the real bidirectional connectivity at all seats of the
Board of Extremadura in the region.

6.4.2 Broadband Internet access for 100% of population

Extremadura is the first region to offer broadband Internet access to 100% of
the community, since June 2006. This fact is possible thanks to the contract
signed between the Board of Extremadura and Telefónica. Telefónica, being
the awarded operator, has expanded coverage of ADSL service to 333 villages
taking the obligation to invest all the necessary in order to deploy the Network
(20 millon euros). A significant fact is that almost 300 of these villages have
less than 1,000 inhabitants. Thus connectivity will be possible from locations
not situated in urban areas: rural tourism, cooperatives, service stations, plant
nurseries, control stations, etc. Likewise, homes situated outside the urban
areas in isolated groupings of houses will also gain Internet access.

62

6.5 Why Cáceres?

6.5.1 Overview of Cáceres

Extremadura is an autonomous communities in Spain of western Spain. It
includes the provinces of Spain of Cáceres (province) and Badajoz (province).
Extremadura borders Portugal to the west, and it is an important area for
wildlife, particularly with the major reserve at Monfragüe, which has recently
been recognised as National Park, or the project of International Tagus River
Natural Park (Parque Natural Rio Tajo internacional).

Cáceres is the capital of Cáceres Province, there have been settlements
near Cáceres since prehistoric times. Evidence of this can be found in the
caves of Maltravieso and El Conejar. The city was founded by the Ancient
Rome in 25 BC.

The old town or Ciudad Monumental still has its ancient walls; this part
of town is also well known for its multitude of storks’ nests. The walls contain
a perfect Medieval town setting with no outward signs of modernity for this
reason many films have been shot here. The Universidad de Extremadura,
and two astronomical observatory are in Cáceres.

Caceres was declared a World Heritage City by UNESCO in 1986 because
of the city’s blend of Roman, Islamic, Northern Gothic and Italian Renaissance
styles, fruit of the many battles fought here throughout history. An amazing
30 towers from the Muslim period still stand in Caceres, of which the Torre
del Bujaco is the most famous.

6.5.2 History

The origins of Caceres go back to prehistoric time, as evidenced by the paint-
ings in the Cuevas de Maltravieso (Maltravieso Caves) which date back from
the late Paleolithic period. The best way to savour this unique city is to leave
your car in one of the carparks located outside the historical centre, and then
to stroll around the historical quarters at your leisure to admire the numerous
buildings, towers, palaces and plazas most very well conserved or recently re-
stored, dating from the Middle Ages and Rennaisance. Visitors will be able to
see remnants from Medieval times, Roman occupation, Moor occupation and
Jewish influence. Caceres has four main areas to be explored; the historical
quarter, the Jewish quarter, the modern center, and the outskirts.

As mentioned above, the first evidence of humans living in Caceres is
from the Late Paleolithic era, around 25,000 B.C. Caceres started to gain
importance as a strategic city under Roman occupation, and remains found in
the city suggest that it was a thriving center as early as 25 B.C. Some remains
of the first wall built around the city by the Romans in III and IV A.D. still
exist, including one entrance, Arco del Cristo.

After the end of the Roman Empire, the city was occupied Barbarians

63

and Visigoths and entered a period of decline and decay until the Arabs con-
quered Caceres in the seven hundreds. The city spent the next few centuries
mostly under Arab rule, although power did exchange from Moors to Chris-
tians several times. During this time, the Arabs rebuilt the city, including a
wall and various towers, including the Torre de Bujaco, and palaces. Caceres
was reconquered by the Christians in the 13th century. During this period
the city had an important Jewish quarter: in the 15th Century when the total
population was 2,000, nearly 140 Jewish families lived in Caceres. The Jewish
population was expelled in 1492, but many remnants which are a result of the
Jewish influence during this period are still be seen today in the Barrio San
Antonio.

Caceres flourished during the Reconquest and the Discovery of America,
as influential Spanish families and nobles built homes and small palaces here,
and many members of families from Extremadura participated in voyages to
America where they made their fortune. In the 19th Century Caceres became
the capital of the province, marking a period of growth which was halted
by the Spanish Civil War. The headquarters of the University and several
regional government departments are to be found in Caceres which today has
a population of 90,000 inhabitants.

6.5.3 Monuments

Cathedrals and Churches: Iglesia y Convento de San Pablo, XV Century
church and convent; Convento de la Compañ́ıa de Jesus barroque style which
today is used for art exhibitions; Iglesia yConcatedral de Santa Maŕıa, cathe-
dral built in XXIII, Gothic period; Iglesia de San Mateo, XV Century church
built on the site of a former mosque; Iglesia de San Francisco Javier, Baroque
period, XVIII century; Iglesia de San Juan, large magestic church which took
five centuries to complete, from 13th to 15th Century; Ermita de San Antonio
Iglesia de Santo Domingo; Ermita de la Paz; Iglesia de Santiago

The Wall: Torre de Bujaco XIIc; Arco de la Estrella XVIIIc; Torre de
Sande, XIVc-XVc; Torre de los Púlpitos; Torre de la Hierba; Arco de Santa
Ana; Torre del Horno; Torre del Postigo; Torre Redonda; Torre Desmochada;
Arco del Cristo; Arco del Socorro

Palaces and stately homes: Palacio de los Golfines de Arriba; Palacio de
los Golfines de Abajo - one of the most spectacular. The Reyes Católicos,
Isabella and Ferdinand, lived here; Palacio del Comendador de Alcuescar;
Palacio-Fortaleza de los Torreorgaz, today a Parador hotel, Palacio Episcopal;
Palacio de Carvajal XVc; Palacio de Godoy; Palacio de Mayoralgo; Mansión
de los Sande; Palacio de las Veletas; Palacio de los Cáceres-Ovando; Casa del
Mono; Palacio de los Toledo-Moctezuma; Casa del Sol; Casa Mudejar; Casa
de Carvajal y Ulloa.

64

6.5.4 Natural Parks and rural tourism

Monfrague Natural Park: 85 km. 17,852 hectares, the Parque Natural de
Monfragüe contains the following villages: Torrejón el Rubio, Serradilla, Mal-
partida de Plasencia, Toril, Serrejón, Jaraicejo y Casas de Miravete. With
one of the largest forests in Spain with over 1,400 different species of trees. A
favourite with birdwatchers, the park has the world’s largest colony of black
vultures and imperial eagles, and is also home to colonies of black storks,
eagle owls, black-shouldered kites, grassland birds including great bustards,
sandgrouse...

65

Chapter 7

Abstracts

7.1 Debian Webservices Development

Frank Lichtenheld

Debian has a lot of useful Web Services that collect and present data about
Debian Development. However, they are only loosely integrated, mostly only
by including links to each other (e.g. PDO ¡-¿ PTS), or by cron’ed data retrival
(e.g. BTS -¿ DDPO, BTS -¿ PTS). While Debian is probably not a community
that would like to loose its diversity in Services Development (i.e. One Service
To Rule Them All, aka launchpad), better integration between these services
is certainly possible and might lead to more efficency and usability. Some ideas
that could be discussed at the BoF: 1) central usermanagment (i.e. don’t force
people to tell every website again and again which packages and maintainer
addresses they are interested in; OpenID?) and persistent configuration (i.e.
allow people to configure services via cookies, server-side stored information,
centrally server-side stored information); 2) Dynamic data retrival; 3) Look
(i.e. creating images and CSS that can easily be reused by many services
instead of all the more or less different instances we currently have); etc.

7.2 dak discussion / hacking session

Joerg Jaspert

A BoF for people interested in dak, the Debian Archive Kit. Main target
is discussion where we want to go, what needs to be in it, what should it do,
etc. Also, if time permits (DebCamp lasts a week), also some hacking session
implementing some features.

7.3 Emdebian update

Neil Williams

66

Emdebian GUI configuration and touchscreen support, root filesystem in-
stallation methods, remaining issues in cross building Debian and extending
the package set and device support.

7.4 Virtualisation in Debian

Jan Lübbe

There are now many virtualization and emulation packages available on
Debian. This talk will give an overview over the different approaches, their
pros/cons and current states. I will also show where each of them is heading
and what that means for Debian.

7.5 Debian on the Neo1973/Freerunner

Jan Lübbe

I’ll show how to install Debian on the Neo1973/Freerunner.

7.6 Debian Edu 100% in main

Holger Levsen

This talk will briefly explain what Debian Edu is, how we develop our
distribution, how we differ from Debian, how we work on bridging the gaps
that still exist and what our plans for the future are.

7.7 SPI BOF

Bdale Garbee

An opportunity to meet board members of Software in the Public Interest
who are present at Debconf, and informally discuss the relationship between
Debian and SPI, and the future of SPI.

7.8 Managing 666 packages, or how to tame the
beast

Mart́ın Ferrari

PET (Package Entropy Tracker) is a collection of scripts that gather infor-
mation about your (or your group’s) packages, based on the SVN repository,
but reaching many external sources. It allows you to see in a bird’s eye view
the health of hundreds of packages, instantly realizing where work is needed.

67

7.9 dh make webapp: yeah right!

Andrew McMillan

Any developers of web applications seem to live in a world of their own.
They pull libraries from here there and everywhere written in multiple lan-
guages, with varying licenses. They expect the database to work the way
their database does, they depend on specific versions of Java, PHP, Python,
MySQL or other software and the debugging details seem to go into a black
hole. In this talk I will review some of the functionality in and around Debian
which can help work around these issues, and I will try and produce a checklist
for developers to consider when trying to see if their software is able to be
packaged easily.

7.10 Locating bugs to kill with SOAP

Don Armstrong

A tutorial on using the SOAP interface to the BTS as well as other methods
of tracking, organizing, modifying, and killing bugs in the interest of developer
sanity.

7.11 Ruby packaging in Debian

Lucas Nussbaum

The various Ruby-related teams are facing various challenges: - how are
we going to deal with the transition from Ruby 1.8 to Ruby 1.9 ? - what
should we do with jruby ?̊- What should we do with gems ?

Ideally, we will have answers to all those questions at the end of this BOF
:-)

7.12 Organizing better in-person meetings

Lucas Nussbaum, César Gómez Mart́ın

In-person meetings, such as the ones organized by Extremadura, are a
great opportunity for Debian. However, many participants to the various
meetings held in the past feel that the way they were organized is suboptimal.
For example, some participants prefer to use those meetings for discussions
rather than usual Debian work, but then it’s difficult to get some other people
involved in the discussions. Ideally, the outcome of this BOF will be an
HOWTO about how to organize successful meetings. With requirements, tips
and tricks to get people involved, etc.

68

7.13 Debian Derivers Roundtable

Andreas Tille

The Debian-Derivers round-table will bring together representatives of or-
ganizations involved in producing Debian derived distributions to discuss the
political, organizational, and social barriers to collaboration with Debian and
with each other. The round table will include representatives of Canonical and
Ubuntu, Skolelinux/Debian-Edu and a representative from the CDD commu-
nity (e.g., Enrico Zini, Andreas Tille, etc). If available, it may also include
representatives from any number of Spanish distributions distributions who
may be in attendance (e.g., Guadalinex, Llurex, LinEx), Userlinux, and oth-
ers. A complete roster will be created once conference attendees have been
settled.

7.14 Debian and LiMux

Florian Maier

A meeting with two developers (and aspiring DD’s, also ;-) of the Munich’s
LiMux team to share and discuss some details of our implementation of an
open source desktop based on the fantastic Debian distribution. Discussion
of possible synergy effects (it would be nice to get some kind of joint effort
going). Everybody interested is welcome!

7.15 Debian-Science

Andreas Tille

The huge pool of packaged software inside Debian has the consequence that
it also contains a large number of software which is used in day to day work
of scientists. But the pure fact that packages are available is not enough to
attract scientist who frequently tend to so called ”easy to install” distributions
and just are not aware which profit they might gain from Debian. Debian-
Science has the goal to make Debian really attractive for scientists.

7.16 Synfig - Animation in the free world

Paul Wise

Short presentation about the Synfig animation studio, some of the anima-
tions produced by it, call for developers.

69

7.17 Packaging with version control systems

Martin F. Krafft

Version control systems are becoming more popular for package mainte-
nance. In this talk, I present an overview of current practices and recent
developments. I also report on the work of the vcs-pkg.org effort, which tries
to identify a workflow for package maintenance which could yield better cross-
distro collaboration.

7.18 Debian and Ubuntu

Mark Shuttleworth

Perspectives on collaboration - an analysis of current patterns of collabo-
ration between Debian and one of its largest derivatives, Ubuntu, as well as
proposals for additional pathways and processes for better collaboration in
general between Debian and its derivatives.

7.19 Herding Wild Cats

Bdale Garbee

A brief history of the Debian project and description of how the key ele-
ments of the project evolved and work today, from the perspective of someone
who has been involved nearly since the beginning.

7.20 LaTeX Beamer Debian Theme BOF

Andreas Tille

The BOF with the same title was intended to find a consensus about some
kind of corporate design for talks using LaTeX Beamer. While there were
some specifications done nothing happened regarding implementation. We
should meet again and try to work on something.

7.21 Quality Assurance in lenny+1

Lucas Nussbaum

What worked well in Quality Assurance for lenny+1? What didn’t? What
should we do for lenny+1?

70

The goal of this BOF is to put everybody interested in QA in the same
room, to discuss: - improvements in the way we work: can we be more effi-
cient? What needs to be changed? - which archive-wide tests/mass bug filings
are people interested in doing during the lenny+1 release cycle? - MIA and
Bapase, or ”how to keep track of the dark corners of Debian?” - orphaned
packages, and WNPP in general

A short introduction on those topics will be given, so people not familiar
with the works of the QA team can participate in the discussions.

7.22 Healthy CDDs

Andreas Tille

The talk will give an overview of the status of the Debian-Med project and
how it could work as an example for other CDDs. Considering that specific
things about medical software is of quite low interest for the DebConf audience
the main focus of the talk will be the way from a one-man idea to a fully grown
team that is working contiuosely to enhance Debian for a specific user group.
Experiences are shared how good tools and reasonable managemend can help
to attract people-users and developers.

7.23 Debian-Med BOF

Andreas Tille

This should be an open discussion for all people interested in free software
in health care.

7.24 Method diffusion in large volunteer projects

Martin F. Krafft

This presentation is about ongoing research on innovation diffusion in the
Debian project. The goal is to determine the conditions under which vol-
unteers adopt new approaches to everyday challenges and order them into a
framework, which can be used prescriptively to help improve the diffusion of
certain tools and foster the competition among contenders.

7.25 Best practises in team-maintaining packages

Gregor Herrmann

71

Team maintenance for (groups of) packages is en vogue; dozens or perhaps
hundreds of packaging teams care for a subset of the Debian archive in a
collaborative style.

This BOF offers the opportunity for members of different packaging teams
to exchange their experiences, share their success and problem stories, and in
general learn from each other.

7.26 netconf

Martin F. Krafft

This presentation introduces netconf, a network configuration manage-
ment system designed with modern network infrastructures and the needs of
roaming users in mind. The talk describes netconf’s architecture and reports
on the progress to date.

7.27 Bringing closer Debian and Rails

Gunnar Wolf

Ruby on Rails has become a very popular framework for Web-based ap-
plications. And, even though Rails itself is neatly packaged and integrated in
Debian, supporting Rails applications (specially in a large-scale provider) can
prove rather difficult. Besides the core application, we face problems such as
handling plugins, concurrent versions, and the like. In this BoF session we
will try and study the different problems we face, and come up with adequate
solutions.

I’m only familiar with Ruby on Rails - but it might be interesting to have
the opinion of people working with other similar-minded frameworks.

7.28 Internationalization in Debian

Christian Perrier

This keynote lecture will attempt to give the overall picture of the situation
of internationalization and localization in the project. Topics: - i18n team,
l10n teams - situation for various regions of the world - relations/non relations
with derived distributions - situation in various areas covered by i18n (WWW,
packages, documentation...) - i18n infrastructure: where are we?

72

7.29 Redesigning DEHS (a.k.a. changing the
watch files atmosphere)

Raphael Stephane Geissert

DEHS being more than four years old has only been modified to satisfy
most of the current needs. Rewriting DEHS in perl with a new design, doing
things at the right place (i.e. extraction of watch files), and more should be
discussed and input, and code, from several people is needed.

7.30 Debian-HPC: making Debian ”the” distro for
clusters and supercomputers

Fabricio Cannini Flores

Enrico Zini’s talk about world domination was missing an important step:
clusters and supercomputers.

7.31 Bits from NMs and users

Paul Wise

Short presentation of the results of these two surveys, and a discussion
about what the results mean for Debian.

http://lists.debian.org/debian-mentors/2008/03/msg00030.html
http://lists.debian.org/debian-user/2008/03/msg02475.html
A followup discussion on Ubuntu’s strategies for attracting and training

new developers and what Debian can learn from that. Also a discussion about
how users transition from being purely users to helping develop Debian.

7.32 Multi winner voting in Debian

Manoj Srivastava

This will be a quick update of devotee functionality update to handle
clone proof STV voting for multiple winners, which degenerates to our current
process for single winner votes. This also serves as a bits from the secretary
talk.

7.33 Debian technical policy update

Manoj Srivastava

73

This talk delivers a progress report of the policy process in Debian, tocuhing
the new version control, BTS usetags and user categories, and the progress
made in rewriting policy in docbook XML. This can be shorter than an hour
if needed, though I can certainly find material to fill the hour.

7.34 Debian Wiki

Franklin Piat

During this work session will focus on two aspects, which should be com-
pleted by Lenny’s release : Choose a license and get a new site layout.

7.35 Debian: casos de éxito en implementaciones
empresariales

José Miguel Parrella Romero

En esta breve presentación se introducirá al participante en las aplicaciones
empresariales de Debian, el sistema operativo libre y universal, y como puede
una organización de cualquier objeto (pública, privada, académica, defensa,
ONG) aprovecharse del modelo de desarrollo colaborativo que caracteriza a
la distribución de software libre más grande del Mundo. Se visitarán casos
de estudio en América Latina y otras regiones, delineando una estrategia de
acercamiento para los participantes que deseen implementar Debian en sus
organizaciones. La charla durará entre 45 y 60 minutos, y será realizada en
castellano.

In this brief presentation participants will be introduced to enterprise ap-
plications of Debian, the free and universal operating system, and how an or-
ganization of any type (public, private, academic, defense, NGO) might take
profit from the collaborative development approach featured by the biggest
free software distribution in the world. Study cases from Latin America and
other regions will be visited, scaffolding an approach strategy for those par-
ticipants willing to deploy Debian in their institutions. The talk will take
between 45 and 60 minutes and will be given in spanish.

7.36 Internacionalización en Debian

César Gómez Mart́ın

Debian contiene numerosas aplicaciones software que tienen la caracteŕıstica
de procesar datos en forma de texto, la mayoŕıa de estas aplicaciones asumen
que el texto está escrito en inglés (ASCII). El problema aparece cuando
la gente cuyo idioma principal no es inglés intenta usar Debian. Aunque

74

la mayoŕıa del software que contiene Debian maneja ISO-8859-1 además de
ASCII, algunas de ellas no pueden manejar caracteres de idiomas como chino,
japonés o coreano.

Es absurdo pensar que una persona que quiere utilizar un ordenador debe
aprender antes a hablar inglés, ah́ı es donde entra en juego la internacional-
ización de Debian.

7.37 Proyecto gnuLinEx

César Gómez Mart́ın

En 1997 Extremadura comenzó a trabajar en la Estrategia Regional de la
Sociedad de la Información en Extremadura (Proyecto Europeo Infodex). En
1998 el Presidente de Extremadura propuso una estrategia para el modelo de
desarrollo regional apoyándose en las posibilidades que ofrecen las Tecnoloǵıas
de la Información y las Comunicaciones. Las acciones estratégicas eran: 34
centros de alfabetización tecnológica, 1 PC para cada 2 estudiantes de secun-
daria en 2005, 60 nuevas empresas creadas en un vivero de empresas y una
feria tecnológica anual.

Para lograr estos propósitos Extremadura necesitaba adaptabilidad, via-
bilidad, seguridad y acceso universal de los ciudadanos a las herramientas.
Esta es la razón por la que se escogió desarrollar un sistema operativo libre
llamado gnuLinEx basado en Debian.

7.38 ¿Qué es el Software Libre?

Gunnar Wolf

Hay una duda muy común al contemplar nuestro trabajo, que mucha gente
puede dar por obvia: ¿Qué es el software libre? ¿Qué hay detrás de nuestro
movimiento? ¿Qué implicaciones tiene?

Posiblemente ya has asistido a pláticas que te presentan las famosas ”cu-
atro libertades” y te presentan al Software Libre desde un punto de vista
técnico. En esta plática, más bien, intento responder a estas dudas dando un
énfasis diferente: elaboro sobre del Conocimiento Libre, y en el software como
una expresión del conocimiento, de la ciencia, del desarrollo histórico de la
humanidad.

7.39 Hosting Caseros

Sebastian Montini

Durante esta presentación se explicará cómo configurar un servidor web
con bases de datos y un gestor de contenidos utilizando Software Libre (CMS:

75

Joomla, Wordpress, Drupal o Wiki). Además, se explicará la configuración de
los servicios de dns dinámicos para poner en marcha un servidor web con una
PC y conexión a internet hogareña.

76

